IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i11p5736-d563098.html
   My bibliography  Save this article

One-Year Lesson: Machine Learning Prediction of COVID-19 Positive Cases with Meteorological Data and Mobility Estimate in Japan

Author

Listed:
  • Essam A. Rashed

    (Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
    Department of Mathematics, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt)

  • Akimasa Hirata

    (Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
    Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan)

Abstract

With the wide spread of COVID-19 and the corresponding negative impact on different life aspects, it becomes important to understand ways to deal with the pandemic as a part of daily routine. After a year of the COVID-19 pandemic, it has become obvious that different factors, including meteorological factors, influence the speed at which the disease is spread and the potential fatalities. However, the impact of each factor on the speed at which COVID-19 is spreading remains controversial. Accurate forecasting of potential positive cases may lead to better management of healthcare resources and provide guidelines for government policies in terms of the action required within an effective timeframe. Recently, Google Cloud has provided online COVID-19 forecasting data for the United States and Japan, which would help in predicting future situations on a state/prefecture scale and are updated on a day-by-day basis. In this study, we propose a deep learning architecture to predict the spread of COVID-19 considering various factors, such as meteorological data and public mobility estimates, and applied it to data collected in Japan to demonstrate its effectiveness. The proposed model was constructed using a neural network architecture based on a long short-term memory (LSTM) network. The model consists of multi-path LSTM layers that are trained using time-series meteorological data and public mobility data obtained from open-source data. The model was tested using different time frames, and the results were compared to Google Cloud forecasts. Public mobility is a dominant factor in estimating new positive cases, whereas meteorological data improve their accuracy. The average relative error of the proposed model ranged from 16.1% to 22.6% in major regions, which is a significant improvement compared with Google Cloud forecasting. This model can be used to provide public awareness regarding the morbidity risk of the COVID-19 pandemic in a feasible manner.

Suggested Citation

  • Essam A. Rashed & Akimasa Hirata, 2021. "One-Year Lesson: Machine Learning Prediction of COVID-19 Positive Cases with Meteorological Data and Mobility Estimate in Japan," IJERPH, MDPI, vol. 18(11), pages 1-16, May.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:11:p:5736-:d:563098
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/11/5736/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/11/5736/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arora, Parul & Kumar, Himanshu & Panigrahi, Bijaya Ketan, 2020. "Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Wang, Peipei & Zheng, Xinqi & Ai, Gang & Liu, Dongya & Zhu, Bangren, 2020. "Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Sina Shaffiee Haghshenas & Behrouz Pirouz & Sami Shaffiee Haghshenas & Behzad Pirouz & Patrizia Piro & Kyoung-Sae Na & Seo-Eun Cho & Zong Woo Geem, 2020. "Prioritizing and Analyzing the Role of Climate and Urban Parameters in the Confirmed Cases of COVID-19 Based on Artificial Intelligence Applications," IJERPH, MDPI, vol. 17(10), pages 1-21, May.
    4. Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    5. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Choujun Zhan & Chi K Tse & Yuxia Fu & Zhikang Lai & Haijun Zhang, 2020. "Modeling and prediction of the 2019 coronavirus disease spreading in China incorporating human migration data," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-17, October.
    7. Shastri, Sourabh & Singh, Kuljeet & Kumar, Sachin & Kour, Paramjit & Mansotra, Vibhakar, 2020. "Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Wang, Peipei & Zheng, Xinqi & Li, Jiayang & Zhu, Bangren, 2020. "Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Sachiko Kodera & Essam A. Rashed & Akimasa Hirata, 2020. "Correlation between COVID-19 Morbidity and Mortality Rates in Japan and Local Population Density, Temperature, and Absolute Humidity," IJERPH, MDPI, vol. 17(15), pages 1-14, July.
    10. Essam A. Rashed & Sachiko Kodera & Jose Gomez-Tames & Akimasa Hirata, 2020. "Influence of Absolute Humidity, Temperature and Population Density on COVID-19 Spread and Decay Durations: Multi-Prefecture Study in Japan," IJERPH, MDPI, vol. 17(15), pages 1-14, July.
    11. Haozhi Pan & Si Chen & Yizhao Gao & Brian Deal & Jinfang Liu, 2020. "An urban informatics approach to understanding residential mobility in Metro Chicago," Environment and Planning B, , vol. 47(8), pages 1456-1473, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Essam A. Rashed & Akimasa Hirata, 2021. "Infectivity Upsurge by COVID-19 Viral Variants in Japan: Evidence from Deep Learning Modeling," IJERPH, MDPI, vol. 18(15), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
    2. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Shruti Sharma & Yogesh Kumar Gupta & Abhinava K. Mishra, 2023. "Analysis and Prediction of COVID-19 Multivariate Data Using Deep Ensemble Learning Methods," IJERPH, MDPI, vol. 20(11), pages 1-23, May.
    4. Ahed Abugabah & Farah Shahid, 2023. "Intelligent Health Care and Diseases Management System: Multi-Day-Ahead Predictions of COVID-19," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    5. Ali, Furqan & Ullah, Farman & Khan, Junaid Iqbal & Khan, Jebran & Sardar, Abdul Wasay & Lee, Sungchang, 2023. "COVID-19 spread control policies based early dynamics forecasting using deep learning algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Wang, Peipei & Zheng, Xinqi & Ai, Gang & Liu, Dongya & Zhu, Bangren, 2020. "Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Huang, Chiou-Jye & Shen, Yamin & Kuo, Ping-Huan & Chen, Yung-Hsiang, 2022. "Novel spatiotemporal feature extraction parallel deep neural network for forecasting confirmed cases of coronavirus disease 2019," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    8. Iloanusi, Ogechukwu & Ross, Arun, 2021. "Leveraging weather data for forecasting cases-to-mortality rates due to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    9. Medeiros, Marcelo C. & Street, Alexandre & Valladão, Davi & Vasconcelos, Gabriel & Zilberman, Eduardo, 2022. "Short-term Covid-19 forecast for latecomers," International Journal of Forecasting, Elsevier, vol. 38(2), pages 467-488.
    10. Essam A. Rashed & Akimasa Hirata, 2021. "Infectivity Upsurge by COVID-19 Viral Variants in Japan: Evidence from Deep Learning Modeling," IJERPH, MDPI, vol. 18(15), pages 1-15, July.
    11. Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Francisco Tarcísio Alves Júnior & Mariá Cristina Vasconcelos Nascimento, 2021. "On Comparing Cross-Validated Forecasting Models with a Novel Fuzzy-TOPSIS Metric: A COVID-19 Case Study," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    12. Abbasimehr, Hossein & Paki, Reza, 2021. "Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Ho, Andrew Fu Wah & Liu, Nan & Ong, Marcus Eng Hock & Cheong, Kang Hao, 2022. "A deep learning architecture for forecasting daily emergency department visits with acuity levels," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    14. Pawan Kumar Singh & Anushka Chouhan & Rajiv Kumar Bhatt & Ravi Kiran & Ansari Saleh Ahmar, 2022. "Implementation of the SutteARIMA method to predict short-term cases of stock market and COVID-19 pandemic in USA," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2023-2033, August.
    15. Rohitash Chandra & Yixuan He, 2021. "Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-32, July.
    16. Frederik Seeup Hass & Jamal Jokar Arsanjani, 2021. "The Geography of the Covid-19 Pandemic: A Data-Driven Approach to Exploring Geographical Driving Forces," IJERPH, MDPI, vol. 18(6), pages 1-19, March.
    17. Ballı, Serkan, 2021. "Data analysis of Covid-19 pandemic and short-term cumulative case forecasting using machine learning time series methods," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    18. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    19. Middya, Asif Iqbal & Roy, Sarbani, 2022. "Spatio-temporal variation of Covid-19 health outcomes in India using deep learning based models," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    20. Sachiko Kodera & Essam A. Rashed & Akimasa Hirata, 2020. "Correlation between COVID-19 Morbidity and Mortality Rates in Japan and Local Population Density, Temperature, and Absolute Humidity," IJERPH, MDPI, vol. 17(15), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:11:p:5736-:d:563098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.