The effects of design parameters on the charge-discharge performance of iron-chromium redox flow batteries
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.08.135
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- An, L. & Zhao, T.S. & Li, Y.S., 2015. "Carbon-neutral sustainable energy technology: Direct ethanol fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1462-1468.
- Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Yan, X.H., 2015. "A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility," Applied Energy, Elsevier, vol. 158(C), pages 157-166.
- Wei, L. & Zhao, T.S. & Zhao, G. & An, L. & Zeng, L., 2016. "A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 176(C), pages 74-79.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Leung, P. & Martin, T. & Liras, M. & Berenguer, A.M. & Marcilla, R. & Shah, A. & An, L. & Anderson, M.A. & Palma, J., 2017. "Cyclohexanedione as the negative electrode reaction for aqueous organic redox flow batteries," Applied Energy, Elsevier, vol. 197(C), pages 318-326.
- Ren, Y.X. & Zhao, T.S. & Tan, P. & Wei, Z.H. & Zhou, X.L., 2017. "Modeling of an aprotic Li-O2 battery incorporating multiple-step reactions," Applied Energy, Elsevier, vol. 187(C), pages 706-716.
- Jiang, H.R. & Shyy, W. & Ren, Y.X. & Zhang, R.H. & Zhao, T.S., 2019. "A room-temperature activated graphite felt as the cost-effective, highly active and stable electrode for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 233, pages 544-553.
- Zeng, Yikai & Li, Fenghao & Lu, Fei & Zhou, Xuelong & Yuan, Yanping & Cao, Xiaoling & Xiang, Bo, 2019. "A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries," Applied Energy, Elsevier, vol. 238(C), pages 435-441.
- Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei & Xu, Zhao & McCulloch, Malcolm D. & Wong, Kit Po, 2017. "A comprehensive review on large-scale photovoltaic system with applications of electrical energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 439-451.
- Bates, Alex M. & Paxton, William F. & Spurgeon, Joshua M. & Park, Sam D. & Sunkara, Mahendra K., 2021. "Earth-abundant redox couples using durable boron doped diamond electrodes: Beyond vanadium redox couples," Applied Energy, Elsevier, vol. 282(PB).
- Souentie, Stamatios & Amr, Issam & Alsuhaibani, Abdulrahman & Almazroei, Essa & Hammad, Ahmad D., 2017. "Temperature, charging current and state of charge effects on iron-vanadium flow batteries operation," Applied Energy, Elsevier, vol. 206(C), pages 568-576.
- Wu, Min & Nan, Mingjun & Ye, Yujiao & Yang, Mingjun & Qiao, Lin & Zhang, Huamin & Ma, Xiangkun, 2024. "A highly active electrolyte for high-capacity iron‑chromium flow batteries," Applied Energy, Elsevier, vol. 358(C).
- Kim, Jungmyung & Park, Heesung, 2017. "Experimental analysis of discharge characteristics in vanadium redox flow battery," Applied Energy, Elsevier, vol. 206(C), pages 451-457.
- Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
- Chen, Wei & Kang, Jialun & Shu, Qing & Zhang, Yunsong, 2019. "Analysis of storage capacity and energy conversion on the performance of gradient and double-layered porous electrode in all-vanadium redox flow batteries," Energy, Elsevier, vol. 180(C), pages 341-355.
- Jiang, H.R. & Shyy, W. & Wu, M.C. & Zhang, R.H. & Zhao, T.S., 2019. "A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 233, pages 105-113.
- Wang, Shaoliang & Xu, Zeyu & Wu, Xiaoliang & Zhao, Huan & Zhao, Jinling & Liu, Jianguo & Yan, Chuanwei & Fan, Xinzhuang, 2020. "Analyses and optimization of electrolyte concentration on the electrochemical performance of iron-chromium flow battery," Applied Energy, Elsevier, vol. 271(C).
- Kim, Jungmyung & Park, Heesung, 2019. "Electrokinetic parameters of a vanadium redox flow battery with varying temperature and electrolyte flow rate," Renewable Energy, Elsevier, vol. 138(C), pages 284-291.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Zhu, X.B., 2016. "Performance of a vanadium redox flow battery with a VANADion membrane," Applied Energy, Elsevier, vol. 180(C), pages 353-359.
- Wei, L. & Zhao, T.S. & Zeng, L. & Zhou, X.L. & Zeng, Y.K., 2016. "Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries," Applied Energy, Elsevier, vol. 180(C), pages 386-391.
- Kim, Jungmyung & Park, Heesung, 2017. "Experimental analysis of discharge characteristics in vanadium redox flow battery," Applied Energy, Elsevier, vol. 206(C), pages 451-457.
- Yuan, Chenguang & Xing, Feng & Zheng, Qiong & Zhang, Huamin & Li, Xianfeng & Ma, Xiangkun, 2020. "Factor analysis of the uniformity of the transfer current density in vanadium flow battery by an improved three-dimensional transient model," Energy, Elsevier, vol. 194(C).
- He, Qijiao & Li, Zheng & Zhao, Dongqi & Yu, Jie & Tan, Peng & Guo, Meiting & Liao, Tianjun & Zhao, Tianshou & Ni, Meng, 2023. "A 3D modelling study on all vanadium redox flow battery at various operating temperatures," Energy, Elsevier, vol. 282(C).
- Kim, Dong Kyu & Yoon, Sang Jun & Lee, Jaeho & Kim, Sangwon, 2018. "Parametric study and flow rate optimization of all-vanadium redox flow batteries," Applied Energy, Elsevier, vol. 228(C), pages 891-901.
- Hosseini, Mir Ghasem & Mahmoodi, Raana & Daneshvari-Esfahlan, Vahid, 2018. "Ni@Pd core-shell nanostructure supported on multi-walled carbon nanotubes as efficient anode nanocatalysts for direct methanol fuel cells with membrane electrode assembly prepared by catalyst coated m," Energy, Elsevier, vol. 161(C), pages 1074-1084.
- Michaela Roschger & Sigrid Wolf & Boštjan Genorio & Viktor Hacker, 2022. "Effect of PdNiBi Metal Content: Cost Reduction in Alkaline Direct Ethanol Fuel Cells," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
- Wei, L. & Zeng, L. & Wu, M.C. & Fan, X.Z. & Zhao, T.S., 2019. "Seawater as an alternative to deionized water for electrolyte preparations in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Zou, Wen-Jiang & Kim, Young-Bae & Jung, Seunghun, 2024. "Capacity fade prediction for vanadium redox flow batteries during long-term operations," Applied Energy, Elsevier, vol. 356(C).
- Yu, Bor-Chern & Wang, Yi-Chun & Lu, Hsin-Chun & Lin, Hsiu-Li & Shih, Chao-Ming & Kumar, S. Rajesh & Lue, Shingjiang Jessie, 2017. "Hydroxide-ion selective electrolytes based on a polybenzimidazole/graphene oxide composite membrane," Energy, Elsevier, vol. 134(C), pages 802-812.
- Wang, Shaoliang & Xu, Zeyu & Wu, Xiaoliang & Zhao, Huan & Zhao, Jinling & Liu, Jianguo & Yan, Chuanwei & Fan, Xinzhuang, 2020. "Analyses and optimization of electrolyte concentration on the electrochemical performance of iron-chromium flow battery," Applied Energy, Elsevier, vol. 271(C).
- Ren, Y.X. & Zhao, T.S. & Tan, P. & Wei, Z.H. & Zhou, X.L., 2017. "Modeling of an aprotic Li-O2 battery incorporating multiple-step reactions," Applied Energy, Elsevier, vol. 187(C), pages 706-716.
- Leung, P. & Martin, T. & Liras, M. & Berenguer, A.M. & Marcilla, R. & Shah, A. & An, L. & Anderson, M.A. & Palma, J., 2017. "Cyclohexanedione as the negative electrode reaction for aqueous organic redox flow batteries," Applied Energy, Elsevier, vol. 197(C), pages 318-326.
- Ke, Yuzhi & Yuan, Wei & Zhou, Feikun & Guo, Wenwen & Li, Jinguang & Zhuang, Ziyi & Su, Xiaoqing & Lu, Biaowu & Zhao, Yonghao & Tang, Yong & Chen, Yu & Song, Jianli, 2021. "A critical review on surface-pattern engineering of nafion membrane for fuel cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Chen, Hui & Li, Xiangrong & Gao, Hai & Liu, Jianguo & Yan, Chuanwei & Tang, Ao, 2019. "Numerical modelling and in-depth analysis of multi-stack vanadium flow battery module incorporating transport delay," Applied Energy, Elsevier, vol. 247(C), pages 13-23.
- Messaggi, M. & Canzi, P. & Mereu, R. & Baricci, A. & Inzoli, F. & Casalegno, A. & Zago, M., 2018. "Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation," Applied Energy, Elsevier, vol. 228(C), pages 1057-1070.
- Chou, Yi-Sin & Hsu, Ning-Yih & Jeng, King-Tsai & Chen, Kuan-Hsiang & Yen, Shi-Chern, 2016. "A novel ultrasonic velocity sensing approach to monitoring state of charge of vanadium redox flow battery," Applied Energy, Elsevier, vol. 182(C), pages 253-259.
- Osmieri, Luigi & Escudero-Cid, Ricardo & Monteverde Videla, Alessandro H.A. & Ocón, Pilar & Specchia, Stefania, 2018. "Application of a non-noble Fe-N-C catalyst for oxygen reduction reaction in an alkaline direct ethanol fuel cell," Renewable Energy, Elsevier, vol. 115(C), pages 226-237.
- Mehboob, Sheeraz & Ali, Ghulam & Shin, Hyun-Jin & Hwang, Jinyeon & Abbas, Saleem & Chung, Kyung Yoon & Ha, Heung Yong, 2018. "Enhancing the performance of all-vanadium redox flow batteries by decorating carbon felt electrodes with SnO2 nanoparticles," Applied Energy, Elsevier, vol. 229(C), pages 910-921.
More about this item
Keywords
Flow batteries; Iron-chromium redox flow batteries; Battery performance; Energy efficiency; Energy storage;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:182:y:2016:i:c:p:204-209. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.