Capacity fade prediction for vanadium redox flow batteries during long-term operations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.122329
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- William A. Braff & Joshua M. Mueller & Jessika E. Trancik, 2016. "Value of storage technologies for wind and solar energy," Nature Climate Change, Nature, vol. 6(10), pages 964-969, October.
- Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Yan, X.H., 2015. "A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility," Applied Energy, Elsevier, vol. 158(C), pages 157-166.
- Badrinarayanan, Rajagopalan & Tseng, King Jet & Soong, Boon Hee & Wei, Zhongbao, 2017. "Modelling and control of vanadium redox flow battery for profile based charging applications," Energy, Elsevier, vol. 141(C), pages 1479-1488.
- Mohamed, M.R. & Leung, P.K. & Sulaiman, M.H., 2015. "Performance characterization of a vanadium redox flow battery at different operating parameters under a standardized test-bed system," Applied Energy, Elsevier, vol. 137(C), pages 402-412.
- Zhang, Yunong & Liu, Le & Xi, Jingyu & Wu, Zenghua & Qiu, Xinping, 2017. "The benefits and limitations of electrolyte mixing in vanadium flow batteries," Applied Energy, Elsevier, vol. 204(C), pages 373-381.
- Zou, Wen-Jiang & Shen, Kun-Yang & Jung, Seunghun & Kim, Young-Bae, 2021. "Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system," Energy, Elsevier, vol. 229(C).
- Stephen Comello & Stefan Reichelstein, 2019. "The emergence of cost effective battery storage," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
- Yanxin Yao & Jiafeng Lei & Yang Shi & Fei Ai & Yi-Chun Lu, 2021. "Assessment methods and performance metrics for redox flow batteries," Nature Energy, Nature, vol. 6(6), pages 582-588, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Shaoliang & Xu, Zeyu & Wu, Xiaoliang & Zhao, Huan & Zhao, Jinling & Liu, Jianguo & Yan, Chuanwei & Fan, Xinzhuang, 2020. "Analyses and optimization of electrolyte concentration on the electrochemical performance of iron-chromium flow battery," Applied Energy, Elsevier, vol. 271(C).
- Glenk, Gunther & Reichelstein, Stefan, 2021. "Intermittent versus dispatchable power sources: An integrated competitive assessment," ZEW Discussion Papers 21-065, ZEW - Leibniz Centre for European Economic Research.
- Kim, Jungmyung & Park, Heesung, 2018. "Impact of nanofluidic electrolyte on the energy storage capacity in vanadium redox flow battery," Energy, Elsevier, vol. 160(C), pages 192-199.
- Yue, Meng & Lv, Zhiqiang & Zheng, Qiong & Li, Xianfeng & Zhang, Huamin, 2019. "Battery assembly optimization: Tailoring the electrode compression ratio based on the polarization analysis in vanadium flow batteries," Applied Energy, Elsevier, vol. 235(C), pages 495-508.
- Ma, Huan & Sun, Qinghan & Chen, Lei & Chen, Qun & Zhao, Tian & He, Kelun & Xu, Fei & Min, Yong & Wang, Shunjiang & Zhou, Guiping, 2023. "Cogeneration transition for energy system decarbonization: From basic to flexible and complementary multi-energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
- Wei, L. & Zhao, T.S. & Zeng, L. & Zhou, X.L. & Zeng, Y.K., 2016. "Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries," Applied Energy, Elsevier, vol. 180(C), pages 386-391.
- Jiang, H.R. & Wu, M.C. & Ren, Y.X. & Shyy, W. & Zhao, T.S., 2018. "Towards a uniform distribution of zinc in the negative electrode for zinc bromine flow batteries," Applied Energy, Elsevier, vol. 213(C), pages 366-374.
- Zhang, Yunong & Liu, Le & Xi, Jingyu & Wu, Zenghua & Qiu, Xinping, 2017. "The benefits and limitations of electrolyte mixing in vanadium flow batteries," Applied Energy, Elsevier, vol. 204(C), pages 373-381.
- López-Vizcaíno, Rubén & Mena, Esperanza & Millán, María & Rodrigo, Manuel A. & Lobato, Justo, 2017. "Performance of a vanadium redox flow battery for the storage of electricity produced in photovoltaic solar panels," Renewable Energy, Elsevier, vol. 114(PB), pages 1123-1133.
- Sun, Hong & Yu, Mingfu & Li, Qiang & Zhuang, Kaiming & Li, Jie & Almheiri, Saif & Zhang, Xiaochen, 2019. "Characteristics of charge/discharge and alternating current impedance in all-vanadium redox flow batteries," Energy, Elsevier, vol. 168(C), pages 693-701.
- Zeng, L. & Zhao, T.S. & Wei, L. & Jiang, H.R. & Wu, M.C., 2019. "Anion exchange membranes for aqueous acid-based redox flow batteries: Current status and challenges," Applied Energy, Elsevier, vol. 233, pages 622-643.
- Gunther Glenk & Stefan Reichelstein, 2022. "Reversible Power-to-Gas systems for energy conversion and storage," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Messaggi, M. & Canzi, P. & Mereu, R. & Baricci, A. & Inzoli, F. & Casalegno, A. & Zago, M., 2018. "Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation," Applied Energy, Elsevier, vol. 228(C), pages 1057-1070.
- Chou, Yi-Sin & Hsu, Ning-Yih & Jeng, King-Tsai & Chen, Kuan-Hsiang & Yen, Shi-Chern, 2016. "A novel ultrasonic velocity sensing approach to monitoring state of charge of vanadium redox flow battery," Applied Energy, Elsevier, vol. 182(C), pages 253-259.
- Glenk, Gunther & Reichelstein, Stefan, 2022. "The economic dynamics of competing power generation sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Zhu, X.B., 2016. "Performance of a vanadium redox flow battery with a VANADion membrane," Applied Energy, Elsevier, vol. 180(C), pages 353-359.
- Kim, Jungmyung & Park, Heesung, 2017. "Experimental analysis of discharge characteristics in vanadium redox flow battery," Applied Energy, Elsevier, vol. 206(C), pages 451-457.
- Wang, Dongxue & Fan, Ruguo & Yang, Peiwen & Du, Kang & Xu, Xiaoxia & Chen, Rongkai, 2024. "Research on floating real-time pricing strategy for microgrid operator in local energy market considering shared energy storage leasing," Applied Energy, Elsevier, vol. 368(C).
- Yuan, Chenguang & Xing, Feng & Zheng, Qiong & Zhang, Huamin & Li, Xianfeng & Ma, Xiangkun, 2020. "Factor analysis of the uniformity of the transfer current density in vanadium flow battery by an improved three-dimensional transient model," Energy, Elsevier, vol. 194(C).
- Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
More about this item
Keywords
Vanadium redox flow battery; Capacity fade; Dynamic prediction model; Vanadium ions crossover; Water transfer;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923016938. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.