IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v247y2019icp13-23.html
   My bibliography  Save this article

Numerical modelling and in-depth analysis of multi-stack vanadium flow battery module incorporating transport delay

Author

Listed:
  • Chen, Hui
  • Li, Xiangrong
  • Gao, Hai
  • Liu, Jianguo
  • Yan, Chuanwei
  • Tang, Ao

Abstract

The flow battery module comprised of multi-stack is commonly constructed for use in large-scale electrical energy storage applications. In such a multi-stack module, the transport delay associated with electrolyte flow in the piping systems inevitably exists that can impose a significant impact on module design and operation performance. In this paper, a complete dynamic model incorporating transport delay is developed for the multi-stack vanadium flow battery module. Based on the model, the module performance and capacity utilization are comprehensively analyzed for different module designs and various operational conditions. Simulation results demonstrate that the transport delay can cause uneven concentration distributions along the piping and lead to a poor stack voltage uniformity in the module, which can subsequently result in premature voltage cut-off in operation and a degraded capacity utilization. Meanwhile, the analyses also prove that the transport delay and its negative effect on the module can be effectively reduced by optimizing the electrolyte feeding mode in addition to adopting a high variable flow rate and a small pipe radius. Such an in-depth simulation analysis considering the transport delay not only offers a cost-effective way to analyze a multi-stack flow battery system, but also provides a deep insight into design and optimization of the large-scale flow battery module that can allow both high system efficiency and superior capacity utilization to be achieved.

Suggested Citation

  • Chen, Hui & Li, Xiangrong & Gao, Hai & Liu, Jianguo & Yan, Chuanwei & Tang, Ao, 2019. "Numerical modelling and in-depth analysis of multi-stack vanadium flow battery module incorporating transport delay," Applied Energy, Elsevier, vol. 247(C), pages 13-23.
  • Handle: RePEc:eee:appene:v:247:y:2019:i:c:p:13-23
    DOI: 10.1016/j.apenergy.2019.04.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919306671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.04.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Cong & Guo, Shaoyun & Fang, Honglin & Liu, Jiayi & Li, Yang & Tang, Hao, 2015. "Numerical and experimental studies of stack shunt current for vanadium redox flow battery," Applied Energy, Elsevier, vol. 151(C), pages 237-248.
    2. Messaggi, M. & Canzi, P. & Mereu, R. & Baricci, A. & Inzoli, F. & Casalegno, A. & Zago, M., 2018. "Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation," Applied Energy, Elsevier, vol. 228(C), pages 1057-1070.
    3. Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Yan, X.H., 2015. "A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility," Applied Energy, Elsevier, vol. 158(C), pages 157-166.
    4. Lei, Y. & Zhang, B.W. & Zhang, Z.H. & Bai, B.F. & Zhao, T.S., 2018. "An improved model of ion selective adsorption in membrane and its application in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 215(C), pages 591-601.
    5. Zheng, Qiong & Li, Xianfeng & Cheng, Yuanhui & Ning, Guiling & Xing, Feng & Zhang, Huamin, 2014. "Development and perspective in vanadium flow battery modeling," Applied Energy, Elsevier, vol. 132(C), pages 254-266.
    6. Pugach, M. & Kondratenko, M. & Briola, S. & Bischi, A., 2018. "Zero dimensional dynamic model of vanadium redox flow battery cell incorporating all modes of vanadium ions crossover," Applied Energy, Elsevier, vol. 226(C), pages 560-569.
    7. Bhattacharjee, Ankur & Saha, Hiranmay, 2018. "Development of an efficient thermal management system for Vanadium Redox Flow Battery under different charge-discharge conditions," Applied Energy, Elsevier, vol. 230(C), pages 1182-1192.
    8. Wang, Q. & Qu, Z.G. & Jiang, Z.Y. & Yang, W.W., 2018. "Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field," Applied Energy, Elsevier, vol. 220(C), pages 106-116.
    9. Yang, Xiao-Guang & Ye, Qiang & Cheng, Ping & Zhao, Tim S., 2015. "Effects of the electric field on ion crossover in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 145(C), pages 306-319.
    10. Wang, Tao & Fu, Jiahui & Zheng, Menglian & Yu, Zitao, 2018. "Dynamic control strategy for the electrolyte flow rate of vanadium redox flow batteries," Applied Energy, Elsevier, vol. 227(C), pages 613-623.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jienkulsawad, Prathak & Jirabovornwisut, Tossaporn & Chen, Yong-Song & Arpornwichanop, Amornchai, 2023. "Effect of battery material and operation on dynamic performance of a vanadium redox flow battery under electrolyte imbalance conditions," Energy, Elsevier, vol. 268(C).
    2. Wang, Shaoliang & Xu, Zeyu & Wu, Xiaoliang & Zhao, Huan & Zhao, Jinling & Liu, Jianguo & Yan, Chuanwei & Fan, Xinzhuang, 2020. "Analyses and optimization of electrolyte concentration on the electrochemical performance of iron-chromium flow battery," Applied Energy, Elsevier, vol. 271(C).
    3. Pugach, M. & Vyshinsky, V. & Bischi, A., 2019. "Energy efficiency analysis for a kilo-watt class vanadium redox flow battery system," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Yu & Eze, Chika & Xiong, Binyu & He, Weidong & Zhang, Han & Lim, T.M. & Ukil, A. & Zhao, Jiyun, 2019. "Recent development of membrane for vanadium redox flow battery applications: A review," Applied Energy, Elsevier, vol. 238(C), pages 202-224.
    2. Guarnieri, Massimo & Trovò, Andrea & Picano, Francesco, 2020. "Enhancing the efficiency of kW-class vanadium redox flow batteries by flow factor modulation: An experimental method," Applied Energy, Elsevier, vol. 262(C).
    3. Pugach, M. & Vyshinsky, V. & Bischi, A., 2019. "Energy efficiency analysis for a kilo-watt class vanadium redox flow battery system," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Zeng, Yikai & Li, Fenghao & Lu, Fei & Zhou, Xuelong & Yuan, Yanping & Cao, Xiaoling & Xiang, Bo, 2019. "A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries," Applied Energy, Elsevier, vol. 238(C), pages 435-441.
    5. Toja, F. & Perlini, L. & Facchi, D. & Casalegno, A. & Zago, M., 2024. "Dramatic mitigation of capacity decay and volume variation in vanadium redox flow batteries through modified preparation of electrolytes," Applied Energy, Elsevier, vol. 354(PB).
    6. Alejandro Clemente & Ramon Costa-Castelló, 2020. "Redox Flow Batteries: A Literature Review Oriented to Automatic Control," Energies, MDPI, vol. 13(17), pages 1-31, September.
    7. Guarnieri, Massimo & Trovò, Andrea & D'Anzi, Angelo & Alotto, Piergiorgio, 2018. "Developing vanadium redox flow technology on a 9-kW 26-kWh industrial scale test facility: Design review and early experiments," Applied Energy, Elsevier, vol. 230(C), pages 1425-1434.
    8. Messaggi, M. & Canzi, P. & Mereu, R. & Baricci, A. & Inzoli, F. & Casalegno, A. & Zago, M., 2018. "Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation," Applied Energy, Elsevier, vol. 228(C), pages 1057-1070.
    9. Kurilovich, Aleksandr A. & Trovò, Andrea & Pugach, Mikhail & Stevenson, Keith J. & Guarnieri, Massimo, 2022. "Prospect of modeling industrial scale flow batteries – From experimental data to accurate overpotential identification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Chou, Yi-Sin & Hsu, Ning-Yih & Jeng, King-Tsai & Chen, Kuan-Hsiang & Yen, Shi-Chern, 2016. "A novel ultrasonic velocity sensing approach to monitoring state of charge of vanadium redox flow battery," Applied Energy, Elsevier, vol. 182(C), pages 253-259.
    11. Lei, Y. & Zhang, B.W. & Zhang, Z.H. & Bai, B.F. & Zhao, T.S., 2018. "An improved model of ion selective adsorption in membrane and its application in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 215(C), pages 591-601.
    12. Trovò, Andrea & Marini, Giacomo & Sutto, Alessandro & Alotto, Piergiorgio & Giomo, Monica & Moro, Federico & Guarnieri, Massimo, 2019. "Standby thermal model of a vanadium redox flow battery stack with crossover and shunt-current effects," Applied Energy, Elsevier, vol. 240(C), pages 893-906.
    13. Cheng, Ziqiang & Tenny, Kevin M. & Pizzolato, Alberto & Forner-Cuenca, Antoni & Verda, Vittorio & Chiang, Yet-Ming & Brushett, Fikile R. & Behrou, Reza, 2020. "Data-driven electrode parameter identification for vanadium redox flow batteries through experimental and numerical methods," Applied Energy, Elsevier, vol. 279(C).
    14. Yuan, Chenguang & Xing, Feng & Zheng, Qiong & Zhang, Huamin & Li, Xianfeng & Ma, Xiangkun, 2020. "Factor analysis of the uniformity of the transfer current density in vanadium flow battery by an improved three-dimensional transient model," Energy, Elsevier, vol. 194(C).
    15. Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Yan, X.H., 2015. "A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility," Applied Energy, Elsevier, vol. 158(C), pages 157-166.
    16. Wang, Shaoliang & Xu, Zeyu & Wu, Xiaoliang & Zhao, Huan & Zhao, Jinling & Liu, Jianguo & Yan, Chuanwei & Fan, Xinzhuang, 2020. "Analyses and optimization of electrolyte concentration on the electrochemical performance of iron-chromium flow battery," Applied Energy, Elsevier, vol. 271(C).
    17. Longchun Zhong & Fengming Chu, 2023. "A Novel Biomimetic Lung-Shaped Flow Field for All-Vanadium Redox Flow Battery," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    18. Zhang, Kaiyue & Xiong, Jing & Yan, Chuanwei & Tang, Ao, 2020. "In-situ measurement of electrode kinetics in porous electrode for vanadium flow batteries using symmetrical cell design," Applied Energy, Elsevier, vol. 272(C).
    19. Pugach, M. & Kondratenko, M. & Briola, S. & Bischi, A., 2018. "Zero dimensional dynamic model of vanadium redox flow battery cell incorporating all modes of vanadium ions crossover," Applied Energy, Elsevier, vol. 226(C), pages 560-569.
    20. Yue, Meng & Lv, Zhiqiang & Zheng, Qiong & Li, Xianfeng & Zhang, Huamin, 2019. "Battery assembly optimization: Tailoring the electrode compression ratio based on the polarization analysis in vanadium flow batteries," Applied Energy, Elsevier, vol. 235(C), pages 495-508.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:247:y:2019:i:c:p:13-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.