IDEAS home Printed from https://ideas.repec.org/r/taf/quantf/v7y2007i1p21-36.html
   My bibliography  Save this item

Multi-scaling in finance

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ladislav Kristoufek & Miloslav Vosvrda, 2014. "Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
  2. Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
  3. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
  4. Nava, Noemi & Di Matteo, T. & Aste, Tomaso, 2016. "Anomalous volatility scaling in high frequency financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 434-445.
  5. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
  6. Kantar, Ersin & Keskin, Mustafa, 2013. "The relationships between electricity consumption and GDP in Asian countries, using hierarchical structure methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5678-5684.
  7. Zhang, Guofu & Li, Jingjing, 2018. "Multifractal analysis of Shanghai and Hong Kong stock markets before and after the connect program," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 611-622.
  8. Riccardo Junior Buonocore & Tomaso Aste & Tiziana Di Matteo, 2015. "Measuring multiscaling in financial time-series," Papers 1509.05471, arXiv.org, revised Sep 2015.
  9. Aslan, Aylin & Sensoy, Ahmet, 2020. "Intraday efficiency-frequency nexus in the cryptocurrency markets," Finance Research Letters, Elsevier, vol. 35(C).
  10. Bell, Peter, 2012. "Goodness of fit test for the multifractal model of asset returns," MPRA Paper 38689, University Library of Munich, Germany.
  11. Morales, Raffaello & Di Matteo, T. & Gramatica, Ruggero & Aste, Tomaso, 2012. "Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3180-3189.
  12. Kristoufek, Ladislav, 2010. "On spurious anti-persistence in the US stock indices," Chaos, Solitons & Fractals, Elsevier, vol. 43(1), pages 68-78.
  13. Miguel Ángel Sánchez & Juan E Trinidad & José García & Manuel Fernández, 2015. "The Effect of the Underlying Distribution in Hurst Exponent Estimation," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-17, May.
  14. Kristoufek, Ladislav, 2009. "R/S analysis and DFA: finite sample properties and confidence intervals," MPRA Paper 16446, University Library of Munich, Germany.
  15. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.
  16. Ayoub Ammy-Driss & Matthieu Garcin, 2021. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Working Papers hal-02903655, HAL.
  17. Mikkel Bennedsen, 2015. "Rough electricity: a new fractal multi-factor model of electricity spot prices," CREATES Research Papers 2015-42, Department of Economics and Business Economics, Aarhus University.
  18. Ladislav KRISTOUFEK & Petra LUNACKOVA, 2013. "Long-term Memory in Electricity Prices: Czech Market Evidence," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 407-424, November.
  19. Kukacka, Jiri & Kristoufek, Ladislav, 2021. "Does parameterization affect the complexity of agent-based models?," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 324-356.
  20. Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Alotaibi, Naif D., 2021. "A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
  21. Sierra-Porta, D., 2024. "A multifractal approach to understanding Forbush Decrease events: Correlations with geomagnetic storms and space weather phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
  22. Lin, Xiaoqiang & Fei, Fangyu, 2013. "Long memory revisit in Chinese stock markets: Based on GARCH-class models and multiscale analysis," Economic Modelling, Elsevier, vol. 31(C), pages 265-275.
  23. Ayoub Ammy-Driss & Matthieu Garcin, 2020. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Papers 2007.10727, arXiv.org, revised Nov 2021.
  24. Nava, Noemi & Di Matteo, Tiziana & Aste, Tomaso, 2018. "Financial time series forecasting using empirical mode decomposition and support vector regression," LSE Research Online Documents on Economics 91028, London School of Economics and Political Science, LSE Library.
  25. Kristoufek, Ladislav, 2009. "Procesy s dlouhou pamětí a jejich vývoj ve výnosech indexu PX v letech 1999 – 2009 [Long-term memory and its evolution in returns of PX between 1999 and 2009]," MPRA Paper 16435, University Library of Munich, Germany.
  26. Kristoufek, Ladislav & Vosvrda, Miloslav, 2016. "Gold, currencies and market efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 27-34.
  27. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "The influence of trading volume on market efficiency: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 259-265.
  28. Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
  29. Fernandes, Leonardo H.S. & de Araújo, Fernando H.A. & Silva, Igor E.M., 2020. "The (in)efficiency of NYMEX energy futures: A multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
  30. Erdős, Péter & Li, Youwei & Liu, Ruipeng & Mende, Alexander, 2021. "Same same but different – Stylized facts of CTA sub strategies," International Review of Financial Analysis, Elsevier, vol. 74(C).
  31. Asif, Raheel & Frömmel, Michael, 2022. "Testing Long memory in exchange rates and its implications for the adaptive market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
  32. Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "The long memory and the transaction cost in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 312-320.
  33. Tilfani, Oussama & Kristoufek, Ladislav & Ferreira, Paulo & El Boukfaoui, My Youssef, 2022. "Heterogeneity in economic relationships: Scale dependence through the multivariate fractal regression," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
  34. Noemi Nava & T. Di Matteo & Tomaso Aste, 2017. "Dynamic correlations at different time-scales with Empirical Mode Decomposition," Papers 1708.06586, arXiv.org.
  35. Guo, Yaoqi & Yao, Shanshan & Cheng, Hui & Zhu, Wensong, 2020. "China's copper futures market efficiency analysis: Based on nonlinear Granger causality and multifractal methods," Resources Policy, Elsevier, vol. 68(C).
  36. Morales, Raffaello & Di Matteo, T. & Aste, Tomaso, 2013. "Non-stationary multifractality in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6470-6483.
  37. Kristoufek, Ladislav, 2009. "Distinguishing between short and long range dependence: Finite sample properties of rescaled range and modified rescaled range," MPRA Paper 16424, University Library of Munich, Germany.
  38. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
  39. Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "Why the long-term auto-correlation has not been eliminated by arbitragers: Evidences from NYMEX," Energy Economics, Elsevier, vol. 59(C), pages 167-178.
  40. Antoniades, I.P. & Karakatsanis, L.P. & Pavlos, E.G., 2021. "Dynamical characteristics of global stock markets based on time dependent Tsallis non-extensive statistics and generalized Hurst exponents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
  41. Brandi, Giuseppe & Di Matteo, T., 2022. "Multiscaling and rough volatility: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 84(C).
  42. Giuseppe Brandi & T. Di Matteo, 2020. "On the statistics of scaling exponents and the Multiscaling Value at Risk," Papers 2002.04164, arXiv.org, revised Mar 2021.
  43. Natalia Diniz-Maganini & Abdul A. Rasheed & Mahmut Yaşar & Hsia Hua Sheng, 2023. "Cross-listing and price efficiency: An institutional explanation," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 54(2), pages 233-257, March.
  44. Faheem Aslam & Paulo Ferreira & Haider Ali & Sumera Kauser, 2022. "Herding behavior during the Covid-19 pandemic: a comparison between Asian and European stock markets based on intraday multifractality," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(2), pages 333-359, June.
  45. Lotfalinezhad, Hamze & Maleki, Ali, 2020. "TTA, a new approach to estimate Hurst exponent with less estimation error and computational time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
  46. Blanka Horvath & Josef Teichmann & Zan Zuric, 2021. "Deep Hedging under Rough Volatility," Papers 2102.01962, arXiv.org.
  47. Wei, Yu & Chen, Wang & Lin, Yu, 2013. "Measuring daily Value-at-Risk of SSEC index: A new approach based on multifractal analysis and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2163-2174.
  48. Li Wang & Xing-Lu Gao & Wei-Xing Zhou, 2023. "Testing For Intrinsic Multifractality In The Global Grain Spot Market Indices: A Multifractal Detrended Fluctuation Analysis," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(07), pages 1-24.
  49. Ladislav Krištoufek, 2010. "Dlouhá paměť a její vývoj ve výnosech burzovního indexu PX v letech 1997-2009 [Long-Term Memory and Its Evolution in Returns of Stock Index PX Between 1997 and 2009]," Politická ekonomie, Prague University of Economics and Business, vol. 2010(4), pages 471-487.
  50. Hallam, Mark & Olmo, Jose, 2014. "Forecasting daily return densities from intraday data: A multifractal approach," International Journal of Forecasting, Elsevier, vol. 30(4), pages 863-881.
  51. Benjamin Rainer Auer, 2018. "Are standard asset pricing factors long-range dependent?," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 42(1), pages 66-88, January.
  52. Li, Daye & Kou, Zhun & Sun, Qiankun, 2015. "The scale-dependent market trend: Empirical evidences using the lagged DFA method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 26-35.
  53. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Papers 2105.09140, arXiv.org, revised Sep 2021.
  54. Francesco Caravelli & James Requeima & Cozmin Ududec & Ali Ashtari & Tiziana Di Matteo & Tomaso Aste, 2015. "Multi-scaling of wholesale electricity prices," Papers 1507.06219, arXiv.org.
  55. Noemi Nava & T. Di Matteo & Tomaso Aste, 2015. "Anomalous volatility scaling in high frequency financial data," Papers 1503.08465, arXiv.org, revised Dec 2015.
  56. Ladislav Kristoufek, 2013. "Testing power-law cross-correlations: Rescaled covariance test," Papers 1307.4727, arXiv.org, revised Aug 2013.
  57. Iker Malaina & Luis Martinez & Roberto Matorras & Carlos Bringas & Larraitz Aranburu & Luis Fernández-Llebrez & Leire Gonzalez & Itziar Arana & Martín-Blas Pérez & Ildefonso Martínez de la Fuente, 2017. "Estimation of preterm labor immediacy by nonlinear methods," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-16, June.
  58. Dufera, Tamirat Temesgen, 2024. "Fractional Brownian motion in option pricing and dynamic delta hedging: Experimental simulations," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
  59. Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
  60. Donovan Platt & Tim Gebbie, 2016. "The Problem of Calibrating an Agent-Based Model of High-Frequency Trading," Papers 1606.01495, arXiv.org, revised Mar 2017.
  61. Vidal-Tomás, David, 2022. "Which cryptocurrency data sources should scholars use?," International Review of Financial Analysis, Elsevier, vol. 81(C).
  62. Kristoufek, Ladislav, 2018. "On Bitcoin markets (in)efficiency and its evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 257-262.
  63. Ladislav Kristoufek, 2012. "Fractal Markets Hypothesis And The Global Financial Crisis: Scaling, Investment Horizons And Liquidity," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1-13.
  64. Hiremath, Gourishankar S. & Narayan, Seema, 2016. "Testing the adaptive market hypothesis and its determinants for the Indian stock markets," Finance Research Letters, Elsevier, vol. 19(C), pages 173-180.
  65. Annalisa Fabretti, 2013. "On the problem of calibrating an agent based model for financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(2), pages 277-293, October.
  66. Trincado, Estrella & Vindel, José María, 2015. "An application of econophysics to the history of economic thought: The analysis of texts from the frequency of appearance of key words," Economics Discussion Papers 2015-51, Kiel Institute for the World Economy (IfW Kiel).
  67. Fernandes, Leonardo H.S. & Araújo, Fernando H.A. & Silva, Igor E.M. & Leite, Urbanno P.S. & de Lima, Neílson F. & Stosic, Tatijana & Ferreira, Tiago A.E., 2020. "Multifractal behavior in the dynamics of Brazilian inflation indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
  68. Christopher M Wray & Steven R Bishop, 2016. "A Financial Market Model Incorporating Herd Behaviour," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-28, March.
  69. Caravenna, Francesco & Corbetta, Jacopo, 2018. "The asymptotic smile of a multiscaling stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1034-1071.
  70. Ines Dika, 2023. "A Statistical Analysis Of The Impact Of The Informal Economy On The Comportment Of The Exchange Rates In Albania," Economy & Business Journal, International Scientific Publications, Bulgaria, vol. 17(1), pages 201-211.
  71. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
  72. Bariviera, Aurelio F., 2021. "One model is not enough: Heterogeneity in cryptocurrencies’ multifractal profiles," Finance Research Letters, Elsevier, vol. 39(C).
  73. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Trinidad Segovia, J.E., 2013. "Measuring the self-similarity exponent in Lévy stable processes of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5330-5345.
  74. Giuseppe Brandi & T. Di Matteo, 2022. "Multiscaling and rough volatility: an empirical investigation," Papers 2201.10466, arXiv.org.
  75. Kristoufek, Ladislav, 2013. "Mixed-correlated ARFIMA processes for power-law cross-correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6484-6493.
  76. Hiremath, Gourishankar S. & Kattuman, Paul, 2017. "Foreign portfolio flows and emerging stock market: Is the midnight bell ringing in India?," Research in International Business and Finance, Elsevier, vol. 42(C), pages 544-558.
  77. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
  78. Saeed Aligholi & Manoj Khandelwal, 2022. "Order of Intermittent Rock Fractured Surfaces," Sustainability, MDPI, vol. 15(1), pages 1-7, December.
  79. Lahmiri, Salim & Bekiros, Stelios & Bezzina, Frank, 2022. "Evidence of the fractal market hypothesis in European industry sectors with the use of bootstrapped wavelet leaders singularity spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
  80. Raffaello Morales & T. Di Matteo & Ruggero Gramatica & Tomaso Aste, 2011. "Dynamical Hurst exponent as a tool to monitor unstable periods in financial time series," Papers 1109.0465, arXiv.org.
  81. Z. Sun & P. A. Hamill & Y. Li & Y. C. Yang & S. A. Vigne, 2019. "Did long-memory of liquidity signal the European sovereign debt crisis?," Annals of Operations Research, Springer, vol. 282(1), pages 355-377, November.
  82. Matthieu Garcin, 2019. "Fractal analysis of the multifractality of foreign exchange rates [Analyse fractale de la multifractalité des taux de change]," Working Papers hal-02283915, HAL.
  83. Michele Caraglio & Fulvio Baldovin & Attilio L. Stella, 2021. "How Fast Does the Clock of Finance Run?—A Time-Definition Enforcing Stationarity and Quantifying Overnight Duration," JRFM, MDPI, vol. 14(8), pages 1-15, August.
  84. Corzo Santamaría, Teresa & Martin-Bujack, Karin & Portela, Jose & Sáenz-Diez, Rocio, 2022. "Early market efficiency testing among hydrogen players," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 723-742.
  85. Ioannis P. Antoniades & Giuseppe Brandi & L. G. Magafas & T. Di Matteo, 2020. "The use of scaling properties to detect relevant changes in financial time series: a new visual warning tool," Papers 2010.08890, arXiv.org, revised Dec 2020.
  86. Cao, Guangxi & Cao, Jie & Xu, Longbing, 2013. "Asymmetric multifractal scaling behavior in the Chinese stock market: Based on asymmetric MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 797-807.
  87. Cao, Guangxi & Xu, Longbing & Cao, Jie, 2012. "Multifractal detrended cross-correlations between the Chinese exchange market and stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4855-4866.
  88. Krenar Avdulaj & Ladislav Kristoufek, 2020. "On Tail Dependence and Multifractality," Mathematics, MDPI, vol. 8(10), pages 1-13, October.
  89. Huai-Long Shi & Zhi-Qiang Jiang & Wei-Xing Zhou, 2016. "Time-varying return predictability in the Chinese stock market," Papers 1611.04090, arXiv.org.
  90. Adam Karp & Gary Van Vuuren, 2019. "Investment Implications Of The Fractal Market Hypothesis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-27, March.
  91. Chang, Lo-Bin & Geman, Stuart, 2013. "Empirical scaling laws and the aggregation of non-stationary data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5046-5052.
  92. Ladislav Kristoufek, 2016. "Power-law cross-correlations estimation under heavy tails," Papers 1602.05385, arXiv.org, revised Apr 2016.
  93. J. B. Glattfelder & A. Dupuis & R. B. Olsen, 2010. "Patterns in high-frequency FX data: discovery of 12 empirical scaling laws," Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 599-614.
  94. Dai Pra, P. & Pigato, P., 2015. "Multi-scaling of moments in stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3725-3747.
  95. Gang-Jin Wang & Chi Xie & Shou Chen, 2017. "Multiscale correlation networks analysis of the US stock market: a wavelet analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 561-594, October.
  96. Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
  97. Anagnostidis, P. & Varsakelis, C. & Emmanouilides, C.J., 2016. "Has the 2008 financial crisis affected stock market efficiency? The case of Eurozone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 116-128.
  98. Lahmiri, Salim, 2018. "Generalized Hurst exponent estimates differentiate EEG signals of healthy and epileptic patients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 378-385.
  99. Noemi Nava & Tiziana Di Matteo & Tomaso Aste, 2018. "Financial Time Series Forecasting Using Empirical Mode Decomposition and Support Vector Regression," Risks, MDPI, vol. 6(1), pages 1-21, February.
  100. Łukasz Bil & Dariusz Grech & Magdalena Zienowicz, 2017. "Asymmetry of price returns—Analysis and perspectives from a non-extensive statistical physics point of view," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-24, November.
  101. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Working Papers hal-03230167, HAL.
  102. Ioannis P. Antoniades & Leonidas P. Karakatsanis & Evgenios G. Pavlos, 2020. "Dynamical Characteristics of Global Stock Markets Based on Time Dependent Tsallis Non-Extensive Statistics and Generalized Hurst Exponents," Papers 2012.06856, arXiv.org, revised Apr 2021.
  103. Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
  104. Sensoy, A., 2013. "Time-varying long range dependence in market returns of FEAS members," Chaos, Solitons & Fractals, Elsevier, vol. 53(C), pages 39-45.
  105. Kristoufek, Ladislav, 2012. "How are rescaled range analyses affected by different memory and distributional properties? A Monte Carlo study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4252-4260.
  106. Kristoufek, Ladislav, 2015. "Finite sample properties of power-law cross-correlations estimators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 513-525.
  107. Zunino, L. & Tabak, B.M. & Figliola, A. & Pérez, D.G. & Garavaglia, M. & Rosso, O.A., 2008. "A multifractal approach for stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6558-6566.
  108. Hua, Jia-Chen & Chen, Lijian & Falcon, Liberty & McCauley, Joseph L. & Gunaratne, Gemunu H., 2015. "Variable diffusion in stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 221-233.
  109. Nava, Noemi & Di Matteo, T. & Aste, Tomaso, 2018. "Dynamic correlations at different time-scales with empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 534-544.
  110. Mnif, Emna & Jarboui, Anis & Mouakhar, Khaireddine, 2020. "How the cryptocurrency market has performed during COVID 19? A multifractal analysis," Finance Research Letters, Elsevier, vol. 36(C).
  111. Ammy-Driss, Ayoub & Garcin, Matthieu, 2023. "Efficiency of the financial markets during the COVID-19 crisis: Time-varying parameters of fractional stable dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
  112. Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Commodity futures and market efficiency," Energy Economics, Elsevier, vol. 42(C), pages 50-57.
  113. Ma, Pengcheng & Li, Daye & Li, Shuo, 2016. "Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 163-176.
  114. Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.
  115. Schmidhuber, Christof, 2022. "Financial markets and the phase transition between water and steam," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
  116. Antoniades, I.P. & Brandi, Giuseppe & Magafas, L. & Di Matteo, T., 2021. "The use of scaling properties to detect relevant changes in financial time series: A new visual warning tool," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
  117. Vacha, Lukas & Barunik, Jozef & Vosvrda, Miloslav, 2012. "How do skilled traders change the structure of the market," International Review of Financial Analysis, Elsevier, vol. 23(C), pages 66-71.
  118. M. Fern'andez-Mart'inez & M. A S'anchez-Granero & Mar'ia Jos'e Mu~noz Torrecillas & Bill McKelvey, 2016. "A comparison among some Hurst exponent approaches to predict nascent bubbles in $500$ company stocks," Papers 1601.04188, arXiv.org.
  119. Ladislav Krištoufek, 2010. "Rescaled Range Analysis and Detrended Fluctuation Analysis: Finite Sample Properties and Confidence Intervals," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 4(3), pages 315-329, November.
  120. Cristescu, Constantin P. & Stan, Cristina & Scarlat, Eugen I. & Minea, Teofil & Cristescu, Cristina M., 2012. "Parameter motivated mutual correlation analysis: Application to the study of currency exchange rates based on intermittency parameter and Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2623-2635.
  121. Xiaojing Xi & Rogemar Mamon, 2014. "Capturing the Regime-Switching and Memory Properties of Interest Rates," Computational Economics, Springer;Society for Computational Economics, vol. 44(3), pages 307-337, October.
  122. Hernández-Pérez, R., 2012. "Allan deviation analysis of financial return series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(9), pages 2883-2888.
  123. Gao, Xing-Lu & Shao, Ying-Hui & Yang, Yan-Hong & Zhou, Wei-Xing, 2022. "Do the global grain spot markets exhibit multifractal nature?," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  124. Brouty, Xavier & Garcin, Matthieu, 2024. "Fractal properties, information theory, and market efficiency," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
  125. José Pedro Ramos-Requena & Juan Evangelista Trinidad-Segovia & Miguel Ángel Sánchez-Granero, 2020. "Some Notes on the Formation of a Pair in Pairs Trading," Mathematics, MDPI, vol. 8(3), pages 1-17, March.
  126. Dima, Bogdan & Dima, Ştefana Maria, 2017. "Mutual information and persistence in the stochastic volatility of market returns: An emergent market example," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 36-59.
  127. Mahjoub, Amal & Attia, Najmeddine, 2022. "A relative vectorial multifractal formalism," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
  128. Ma, Junjun & Xiong, Xiong & He, Feng & Zhang, Wei, 2017. "Volatility measurement with directional change in Chinese stock market: Statistical property and investment strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 169-180.
  129. Aslam, Faheem & Memon, Bilal Ahmed & Hunjra, Ahmed Imran & Bouri, Elie, 2023. "The dynamics of market efficiency of major cryptocurrencies," Global Finance Journal, Elsevier, vol. 58(C).
  130. A. Sensoy & Benjamin M. Tabak, 2013. "How much random does European Union walk? A time-varying long memory analysis," Working Papers Series 342, Central Bank of Brazil, Research Department.
  131. Mahata, Ajit & Bal, Debi Prasad & Nurujjaman, Md, 2020. "Identification of short-term and long-term time scales in stock markets and effect of structural break," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.