IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v43y2010i1p68-78.html
   My bibliography  Save this article

On spurious anti-persistence in the US stock indices

Author

Listed:
  • Kristoufek, Ladislav

Abstract

We reexamine the results of Serletis and Rosenberg [Serletis A, Rosenberg A. Mean reversion in the US stock market. Chaos, Solitons and Fractals 2009;40:2007–2015.] who claim that the returns of the most important US stock indices (DJI, NASDAQ, NYSE and S&P500) are strongly anti-persistent and thus mean reverting. We apply various methods to detect long-range dependence – detrending moving average, detrended fluctuation analysis, generalized Hurst exponent approach, classical rescaled range analysis and modified rescaled range analysis. We show that there are no signs of anti-persistence in any of the indices. Moreover, we discuss that the authors did not find any anti-persistence but rather showed returns of the said assets do not follow the scaling power law around their moving average with varying window length. Anti-persistence is thus spurious and due to wrong application of detrending moving average method.

Suggested Citation

  • Kristoufek, Ladislav, 2010. "On spurious anti-persistence in the US stock indices," Chaos, Solitons & Fractals, Elsevier, vol. 43(1), pages 68-78.
  • Handle: RePEc:eee:chsofr:v:43:y:2010:i:1:p:68-78
    DOI: 10.1016/j.chaos.2010.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007791000010X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2010.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cajueiro, Daniel O. & Tabak, Benjamin M., 2008. "Testing for long-range dependence in world stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 918-927.
    2. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    3. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    4. Alvarez-Ramirez, Jose & Rodriguez, Eduardo & Carlos Echeverría, Juan, 2005. "Detrending fluctuation analysis based on moving average filtering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 199-219.
    5. Di Matteo, T. & Aste, T. & Dacorogna, M.M., 2003. "Scaling behaviors in differently developed markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 183-188.
    6. Lillo Fabrizio & Farmer J. Doyne, 2004. "The Long Memory of the Efficient Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-35, September.
    7. T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
    8. Matos, José A.O. & Gama, Sílvio M.A. & Ruskin, Heather J. & Sharkasi, Adel Al & Crane, Martin, 2008. "Time and scale Hurst exponent analysis for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3910-3915.
    9. Serletis, Apostolos & Rosenberg, Aryeh Adam, 2009. "Mean reversion in the US stock market," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2007-2015.
    10. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    11. Carbone, A. & Castelli, G. & Stanley, H.E., 2004. "Time-dependent Hurst exponent in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 267-271.
    12. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dilip Kumar & S. Maheswaran, 2015. "Long memory in Indian exchange rates: an application of power-law scaling analysis," Macroeconomics and Finance in Emerging Market Economies, Taylor & Francis Journals, vol. 8(1-2), pages 90-107, July.
    2. Kristoufek, Ladislav, 2012. "How are rescaled range analyses affected by different memory and distributional properties? A Monte Carlo study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4252-4260.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    2. Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "The long memory and the transaction cost in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 312-320.
    3. Kristoufek, Ladislav, 2012. "How are rescaled range analyses affected by different memory and distributional properties? A Monte Carlo study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4252-4260.
    4. Kristoufek, Ladislav, 2009. "R/S analysis and DFA: finite sample properties and confidence intervals," MPRA Paper 16446, University Library of Munich, Germany.
    5. Li, Daye & Kou, Zhun & Sun, Qiankun, 2015. "The scale-dependent market trend: Empirical evidences using the lagged DFA method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 26-35.
    6. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Trinidad Segovia, J.E., 2013. "Measuring the self-similarity exponent in Lévy stable processes of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5330-5345.
    7. Lotfalinezhad, Hamze & Maleki, Ali, 2020. "TTA, a new approach to estimate Hurst exponent with less estimation error and computational time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    8. Kristoufek, Ladislav, 2009. "Distinguishing between short and long range dependence: Finite sample properties of rescaled range and modified rescaled range," MPRA Paper 16424, University Library of Munich, Germany.
    9. Ladislav Krištoufek, 2010. "Dlouhá paměť a její vývoj ve výnosech burzovního indexu PX v letech 1997-2009 [Long-Term Memory and Its Evolution in Returns of Stock Index PX Between 1997 and 2009]," Politická ekonomie, Prague University of Economics and Business, vol. 2010(4), pages 471-487.
    10. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
    11. Kristoufek, Ladislav, 2009. "Procesy s dlouhou pamětí a jejich vývoj ve výnosech indexu PX v letech 1999 – 2009 [Long-term memory and its evolution in returns of PX between 1999 and 2009]," MPRA Paper 16435, University Library of Munich, Germany.
    12. Miguel Ángel Sánchez & Juan E Trinidad & José García & Manuel Fernández, 2015. "The Effect of the Underlying Distribution in Hurst Exponent Estimation," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-17, May.
    13. A. Gómez-Águila & J. E. Trinidad-Segovia & M. A. Sánchez-Granero, 2022. "Improvement in Hurst exponent estimation and its application to financial markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    14. Kristoufek, Ladislav, 2019. "Are the crude oil markets really becoming more efficient over time? Some new evidence," Energy Economics, Elsevier, vol. 82(C), pages 253-263.
    15. Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
    16. Morales, Raffaello & Di Matteo, T. & Gramatica, Ruggero & Aste, Tomaso, 2012. "Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3180-3189.
    17. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
    18. Corzo Santamaría, Teresa & Martin-Bujack, Karin & Portela, Jose & Sáenz-Diez, Rocio, 2022. "Early market efficiency testing among hydrogen players," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 723-742.
    19. Bariviera, Aurelio F., 2021. "One model is not enough: Heterogeneity in cryptocurrencies’ multifractal profiles," Finance Research Letters, Elsevier, vol. 39(C).
    20. Ladislav KRISTOUFEK & Petra LUNACKOVA, 2013. "Long-term Memory in Electricity Prices: Czech Market Evidence," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 407-424, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:43:y:2010:i:1:p:68-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.