IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v19y2016icp173-180.html
   My bibliography  Save this article

Testing the adaptive market hypothesis and its determinants for the Indian stock markets

Author

Listed:
  • Hiremath, Gourishankar S.
  • Narayan, Seema

Abstract

We examine the adaptive market hypothesis using the Generalized Hurst exponent, derived using fixed and rolling windows. We find that the Indian stock market is moving towards efficiency. We also ascertain a positive and significant link between the Indian market's efficiency gap and financial crises, other international shocks and major domestic policy and crisis-related events. Net foreign institutional investment increases the efficiency gap, although the impact is less for international events. Foreign institutional investment and market microstructure factors do not influence efficiency in an emerging market. This evidence would benefit a stock market liberalization policy review.

Suggested Citation

  • Hiremath, Gourishankar S. & Narayan, Seema, 2016. "Testing the adaptive market hypothesis and its determinants for the Indian stock markets," Finance Research Letters, Elsevier, vol. 19(C), pages 173-180.
  • Handle: RePEc:eee:finlet:v:19:y:2016:i:c:p:173-180
    DOI: 10.1016/j.frl.2016.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612316301271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2016.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swati Ghosh & Ernesto Revilla, 2008. "Enhancing the efficiency of securities markets in East Asia," Macroeconomics and Finance in Emerging Market Economies, Taylor & Francis Journals, vol. 1(2), pages 249-268.
    2. Lei Jiang, 2011. "Order Imbalance, Liquidity, and Market Efficiency: Evidence from the Chinese Stock Market," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 32, pages 469-480, October.
    3. Cochrane, John H., 1991. "Volatility tests and efficient markets : A review essay," Journal of Monetary Economics, Elsevier, vol. 27(3), pages 463-485, June.
    4. Kaminsky, Graciela L. & Schmukler, Sergio L., 1999. "What triggers market jitters?: A chronicle of the Asian crisis," Journal of International Money and Finance, Elsevier, vol. 18(4), pages 537-560, August.
    5. Shiller, Robert J, 1981. "Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?," American Economic Review, American Economic Association, vol. 71(3), pages 421-436, June.
    6. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Miranda, José G.V. & García-Rubio, Raquel, 2013. "How fast do stock prices adjust to market efficiency? Evidence from a detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1631-1637.
    7. T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
    8. Szafarz, Ariane, 2012. "Financial crises in efficient markets: How fundamentalists fuel volatility," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 105-111.
    9. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2008. "Liquidity and market efficiency," Journal of Financial Economics, Elsevier, vol. 87(2), pages 249-268, February.
    10. Lagoarde-Segot, Thomas & Lucey, Brian M., 2008. "Efficiency in emerging markets--Evidence from the MENA region," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(1), pages 94-105, February.
    11. Graham, Michael & Peltomäki, Jarkko & Sturludóttir, Hildur, 2015. "Do capital controls affect stock market efficiency? Lessons from Iceland," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 82-88.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hiremath, Gourishankar S. & Kattuman, Paul, 2017. "Foreign portfolio flows and emerging stock market: Is the midnight bell ringing in India?," Research in International Business and Finance, Elsevier, vol. 42(C), pages 544-558.
    2. Ryuichi Yamamoto, 2022. "Predictor Choice, Investor Types, and the Price Impact of Trades on the Tokyo Stock Exchange," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 325-356, January.
    3. Ariane Szafarz, 2015. "Market Efficiency and Crises:Don’t Throw the Baby out with the Bathwater," Bankers, Markets & Investors, ESKA Publishing, issue 139, pages 20-26, November-.
    4. John H. Cochrane, 1999. "New facts in finance," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q III), pages 36-58.
    5. Campbell, John Y., 2001. "Why long horizons? A study of power against persistent alternatives," Journal of Empirical Finance, Elsevier, vol. 8(5), pages 459-491, December.
    6. Eugene N. White, 2004. "Bubbles and Busts: The 1990s in the Mirror of the 1920s," FRU Working Papers 2004/09, University of Copenhagen. Department of Economics. Finance Research Unit.
    7. David Gruen, 1995. "Financial Market Volatility and the World-wide Fall in Inflation," RBA Research Discussion Papers rdp9513, Reserve Bank of Australia.
    8. Nathan S. Balke & Mark E. Wohar, 2006. "What Drives Stock Prices? Identifying the Determinants of Stock Price Movements," Southern Economic Journal, John Wiley & Sons, vol. 73(1), pages 55-78, July.
    9. Wang, Yuming & Ma, Jinpeng, 2014. "Excess volatility and the cross-section of stock returns," The North American Journal of Economics and Finance, Elsevier, vol. 27(C), pages 1-16.
    10. John H. Cochrane, 2017. "Macro-Finance," Review of Finance, European Finance Association, vol. 21(3), pages 945-985.
    11. Adam Karp & Gary Van Vuuren, 2019. "Investment Implications Of The Fractal Market Hypothesis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-27, March.
    12. John Y. Campbell & John Cochrane, 1999. "Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," Journal of Political Economy, University of Chicago Press, vol. 107(2), pages 205-251, April.
    13. Brière, Marie & Chapelle, Ariane & Szafarz, Ariane, 2012. "No contagion, only globalization and flight to quality," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1729-1744.
    14. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    15. Bernard Dumas & Alexander Kurshev & Raman Uppal, 2005. "What Can Rational Investors Do About Excessive Volatility and Sentiment Fluctuations?," NBER Working Papers 11803, National Bureau of Economic Research, Inc.
    16. Tim Bollerslev & Robert J. Hodrick, 1992. "Financial Market Efficiency Tests," NBER Working Papers 4108, National Bureau of Economic Research, Inc.
    17. Berardi, Michele, 2021. "Uncertainty, sentiments and time-varying risk premia," MPRA Paper 106922, University Library of Munich, Germany.
    18. Matthijs Lof, 2015. "Rational Speculators, Contrarians, and Excess Volatility," Management Science, INFORMS, vol. 61(8), pages 1889-1901, August.
    19. Iwatsubo, Kentaro & Watkins, Clinton & Xu, Tao, 2018. "Intraday seasonality in efficiency, liquidity, volatility and volume: Platinum and gold futures in Tokyo and New York," Journal of Commodity Markets, Elsevier, vol. 11(C), pages 59-71.
    20. Garcia, M.M. & Machado Pereira, A.C. & Acebal, J.L. & Bosco de Magalhães, A.R., 2020. "Forecast model for financial time series: An approach based on harmonic oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).

    More about this item

    Keywords

    Time-varying efficiency; Adaptive market hypothesis; Financial liberalization; Economic crisis; Market microstructure; International capital flows; India;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:19:y:2016:i:c:p:173-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.