IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0178257.html
   My bibliography  Save this article

Estimation of preterm labor immediacy by nonlinear methods

Author

Listed:
  • Iker Malaina
  • Luis Martinez
  • Roberto Matorras
  • Carlos Bringas
  • Larraitz Aranburu
  • Luis Fernández-Llebrez
  • Leire Gonzalez
  • Itziar Arana
  • Martín-Blas Pérez
  • Ildefonso Martínez de la Fuente

Abstract

Preterm delivery affects about one tenth of human births and is associated with an increased perinatal morbimortality as well as with remarkable costs. Even if there are a number of predictors and markers of preterm delivery, none of them has a high accuracy. In order to find quantitative indicators of the immediacy of labor, 142 cardiotocographies (CTG) recorded from women consulting because of suspected threatened premature delivery with gestational ages comprehended between 24 and 35 weeks were collected and analyzed. These 142 samples were divided into two groups: the delayed labor group (n = 75), formed by the women who delivered more than seven days after the tocography was performed, and the anticipated labor group (n = 67), which corresponded to the women whose labor took place during the seven days following the recording. As a means of finding significant differences between the two groups, some key informational properties were analyzed by applying nonlinear techniques on the tocography recordings. Both the regularity and the persistence levels of the delayed labor group, which were measured by Approximate Entropy (ApEn) and Generalized Hurst Exponent (GHE) respectively, were found to be significantly different from the anticipated labor group. As delivery approached, the values of ApEn tended to increase while the values of GHE tended to decrease, suggesting that these two methods are sensitive to labor immediacy. On this paper, for the first time, we have been able to estimate childbirth immediacy by applying nonlinear methods on tocographies. We propose the use of the techniques herein described as new quantitative diagnosis tools for premature birth that significantly improve the current protocols for preterm labor prediction worldwide.

Suggested Citation

  • Iker Malaina & Luis Martinez & Roberto Matorras & Carlos Bringas & Larraitz Aranburu & Luis Fernández-Llebrez & Leire Gonzalez & Itziar Arana & Martín-Blas Pérez & Ildefonso Martínez de la Fuente, 2017. "Estimation of preterm labor immediacy by nonlinear methods," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-16, June.
  • Handle: RePEc:plo:pone00:0178257
    DOI: 10.1371/journal.pone.0178257
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178257
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0178257&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0178257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Goldenberg, R.L. & Iams, J.D. & Mercer, B.M. & Meis, P.J. & Moawad, A.H. & Copper, R.L. & Das, A. & Thom, E. & Johnson, F. & McNellis, D. & Miodovnik, M. & Van Dorsten, J.P. & Caritis, S.N. & Thurnau,, 1998. "The preterm prediction study: The value of new vs standard risk factors in predicting early and all spontaneous preterm births," American Journal of Public Health, American Public Health Association, vol. 88(2), pages 233-238.
    2. T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    2. Ayoub Ammy-Driss & Matthieu Garcin, 2021. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Working Papers hal-02903655, HAL.
    3. Ayoub Ammy-Driss & Matthieu Garcin, 2020. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Papers 2007.10727, arXiv.org, revised Nov 2021.
    4. Ladislav KRISTOUFEK & Petra LUNACKOVA, 2013. "Long-term Memory in Electricity Prices: Czech Market Evidence," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 407-424, November.
    5. Li Wang & Xing-Lu Gao & Wei-Xing Zhou, 2023. "Testing For Intrinsic Multifractality In The Global Grain Spot Market Indices: A Multifractal Detrended Fluctuation Analysis," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(07), pages 1-24.
    6. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Papers 2105.09140, arXiv.org, revised Sep 2021.
    7. Kristoufek, Ladislav, 2018. "On Bitcoin markets (in)efficiency and its evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 257-262.
    8. Caravenna, Francesco & Corbetta, Jacopo, 2018. "The asymptotic smile of a multiscaling stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1034-1071.
    9. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
    10. Adam Karp & Gary Van Vuuren, 2019. "Investment Implications Of The Fractal Market Hypothesis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-27, March.
    11. Chang, Lo-Bin & Geman, Stuart, 2013. "Empirical scaling laws and the aggregation of non-stationary data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5046-5052.
    12. Noemi Nava & Tiziana Di Matteo & Tomaso Aste, 2018. "Financial Time Series Forecasting Using Empirical Mode Decomposition and Support Vector Regression," Risks, MDPI, vol. 6(1), pages 1-21, February.
    13. Hua, Jia-Chen & Chen, Lijian & Falcon, Liberty & McCauley, Joseph L. & Gunaratne, Gemunu H., 2015. "Variable diffusion in stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 221-233.
    14. Nava, Noemi & Di Matteo, T. & Aste, Tomaso, 2018. "Dynamic correlations at different time-scales with empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 534-544.
    15. Ma, Pengcheng & Li, Daye & Li, Shuo, 2016. "Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 163-176.
    16. Cristescu, Constantin P. & Stan, Cristina & Scarlat, Eugen I. & Minea, Teofil & Cristescu, Cristina M., 2012. "Parameter motivated mutual correlation analysis: Application to the study of currency exchange rates based on intermittency parameter and Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2623-2635.
    17. Hernández-Pérez, R., 2012. "Allan deviation analysis of financial return series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(9), pages 2883-2888.
    18. Zhang, Guofu & Li, Jingjing, 2018. "Multifractal analysis of Shanghai and Hong Kong stock markets before and after the connect program," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 611-622.
    19. Aslan, Aylin & Sensoy, Ahmet, 2020. "Intraday efficiency-frequency nexus in the cryptocurrency markets," Finance Research Letters, Elsevier, vol. 35(C).
    20. Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Alotaibi, Naif D., 2021. "A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0178257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.