IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1309.0582.html
   My bibliography  Save this paper

Long-term memory in electricity prices: Czech market evidence

Author

Listed:
  • Ladislav Kristoufek
  • Petra Lunackova

Abstract

We analyze long-term memory properties of hourly prices of electricity in the Czech Republic between 2009 and 2012. As the dynamics of the electricity prices is dominated by cycles -- mainly intraday and daily -- we opt for the detrended fluctuation analysis, which is well suited for such specific series. We find that the electricity prices are non-stationary but strongly mean-reverting which distinguishes them from other financial assets which are usually characterized as unit root series. Such description is attributed to specific features of electricity prices, mainly to non-storability. Additionally, we argue that the rapid mean-reversion is due to the principles of electricity spot prices. These properties are shown to be stable across all studied years.

Suggested Citation

  • Ladislav Kristoufek & Petra Lunackova, 2013. "Long-term memory in electricity prices: Czech market evidence," Papers 1309.0582, arXiv.org.
  • Handle: RePEc:arx:papers:1309.0582
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1309.0582
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Erzgräber, Hartmut & Strozzi, Fernanda & Zaldívar, José-Manuel & Touchette, Hugo & Gutiérrez, Eugénio & Arrowsmith, David K., 2008. "Time series analysis and long range correlations of Nordic spot electricity market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6567-6574.
    2. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    3. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    4. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    5. Di Matteo, T. & Aste, T. & Dacorogna, M.M., 2003. "Scaling behaviors in differently developed markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 183-188.
    6. Norouzzadeh, P. & Dullaert, W. & Rahmani, B., 2007. "Anti-correlation and multifractal features of Spain electricity spot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 333-342.
    7. Weron, Rafal & Przybyłowicz, Beata, 2000. "Hurst analysis of electricity price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 462-468.
    8. Simonsen, Ingve, 2003. "Measuring anti-correlations in the nordic electricity spot market by wavelets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 597-606.
    9. Lee, Chien-Chiang, 2005. "Energy consumption and GDP in developing countries: A cointegrated panel analysis," Energy Economics, Elsevier, vol. 27(3), pages 415-427, May.
    10. Helyette Geman, 2005. "Energy Commodity Prices : Is Mean-reversion Dead ?," Post-Print halshs-00144306, HAL.
    11. Alvarez-Ramirez, Jose & Escarela-Perez, Rafael, 2010. "Time-dependent correlations in electricity markets," Energy Economics, Elsevier, vol. 32(2), pages 269-277, March.
    12. Ingve Simonsen, 2001. "Measuring Anti-Correlations in the Nordic Electricity Spot Market by Wavelets," Papers cond-mat/0108033, arXiv.org, revised Apr 2003.
    13. Severin Borenstein & James. Bushnell & Steven Stoft, 2000. "The Competitive Effects of Transmission Capacity in A Deregulated Electricity Industry," RAND Journal of Economics, The RAND Corporation, vol. 31(2), pages 294-325, Summer.
    14. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    15. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    16. Uritskaya, Olga Y. & Serletis, Apostolos, 2008. "Quantifying multiscale inefficiency in electricity markets," Energy Economics, Elsevier, vol. 30(6), pages 3109-3117, November.
    17. Simonsen, Ingve & Weron, Rafal & Mo, Birger, 2004. "Structure and stylized facts of a deregulated power market," MPRA Paper 1443, University Library of Munich, Germany.
    18. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    19. Malo, Pekka, 2009. "Modeling electricity spot and futures price dependence: A multifrequency approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4763-4779.
    20. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    21. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    22. Ciarreta, A. & Zarraga, A., 2010. "Economic growth-electricity consumption causality in 12 European countries: A dynamic panel data approach," Energy Policy, Elsevier, vol. 38(7), pages 3790-3796, July.
    23. Alvarez-Ramirez, Jose & Cisneros, Myriam & Ibarra-Valdez, Carlos & Soriano, Angel, 2002. "Multifractal Hurst analysis of crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(3), pages 651-670.
    24. M. T. Barlow, 2002. "A Diffusion Model For Electricity Prices," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 287-298, October.
    25. Soytas, Ugur & Sari, Ramazan, 2003. "Energy consumption and GDP: causality relationship in G-7 countries and emerging markets," Energy Economics, Elsevier, vol. 25(1), pages 33-37, January.
    26. T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
    27. Valderio A. Reisen, 1994. "ESTIMATION OF THE FRACTIONAL DIFFERENCE PARAMETER IN THE ARIMA(p, d, q) MODEL USING THE SMOOTHED PERIODOGRAM," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(3), pages 335-350, May.
    28. Park, Haesun & Mjelde, James W. & Bessler, David A., 2006. "Price dynamics among U.S. electricity spot markets," Energy Economics, Elsevier, vol. 28(1), pages 81-101, January.
    29. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    30. Haugom, Erik & Westgaard, Sjur & Solibakke, Per Bjarte & Lien, Gudbrand, 2011. "Realized volatility and the influence of market measures on predictability: Analysis of Nord Pool forward electricity data," Energy Economics, Elsevier, vol. 33(6), pages 1206-1215.
    31. repec:dau:papers:123456789/1442 is not listed on IDEAS
    32. Ladislav Krištoufek, 2010. "Rescaled Range Analysis and Detrended Fluctuation Analysis: Finite Sample Properties and Confidence Intervals," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 4(3), pages 315-329, November.
    33. Zachmann, Georg, 2008. "Electricity wholesale market prices in Europe: Convergence?," Energy Economics, Elsevier, vol. 30(4), pages 1659-1671, July.
    34. Squalli, Jay, 2007. "Electricity consumption and economic growth: Bounds and causality analyses of OPEC members," Energy Economics, Elsevier, vol. 29(6), pages 1192-1205, November.
    35. Bera, Anil K. & Jarque, Carlos M., 1981. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals : Monte Carlo Evidence," Economics Letters, Elsevier, vol. 7(4), pages 313-318.
    36. Rafal Weron, 2001. "Measuring long-range dependence in electricity prices," Papers cond-mat/0103621, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bennedsen, Mikkel, 2017. "A rough multi-factor model of electricity spot prices," Energy Economics, Elsevier, vol. 63(C), pages 301-313.
    2. Fan, Qingju, 2016. "Asymmetric multiscale detrended fluctuation analysis of California electricity spot price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 252-260.
    3. Mikkel Bennedsen, 2015. "Rough electricity: a new fractal multi-factor model of electricity spot prices," CREATES Research Papers 2015-42, Department of Economics and Business Economics, Aarhus University.
    4. Luňáčková, Petra & Průša, Jan & Janda, Karel, 2017. "The merit order effect of Czech photovoltaic plants," Energy Policy, Elsevier, vol. 106(C), pages 138-147.
    5. Karahan, Cenk C. & Odabaşı, Attila & Tiryaki, C. Sani, 2024. "Wired together: Integration and efficiency in European electricity markets," Energy Economics, Elsevier, vol. 133(C).
    6. Fan, Qingju & Li, Dan, 2015. "Multifractal cross-correlation analysis in electricity spot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 17-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avci-Surucu, Ezgi & Aydogan, A. Kursat & Akgul, Doganbey, 2016. "Bidding structure, market efficiency and persistence in a multi-time tariff setting," Energy Economics, Elsevier, vol. 54(C), pages 77-87.
    2. Fan, Qingju & Li, Dan, 2015. "Multifractal cross-correlation analysis in electricity spot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 17-27.
    3. Ladislav Kristoufek, 2013. "Testing power-law cross-correlations: Rescaled covariance test," Papers 1307.4727, arXiv.org, revised Aug 2013.
    4. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.
    5. Fan, Qingju, 2016. "Asymmetric multiscale detrended fluctuation analysis of California electricity spot price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 252-260.
    6. Serinaldi, Francesco, 2010. "Use and misuse of some Hurst parameter estimators applied to stationary and non-stationary financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2770-2781.
    7. Michel Culot & Valérie Goffin & Steve Lawford & Sébastien de Meten & Yves Smeers, 2013. "Practical stochastic modelling of electricity prices," Post-Print hal-01021603, HAL.
    8. Kristoufek, Ladislav, 2015. "Finite sample properties of power-law cross-correlations estimators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 513-525.
    9. Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "Why the long-term auto-correlation has not been eliminated by arbitragers: Evidences from NYMEX," Energy Economics, Elsevier, vol. 59(C), pages 167-178.
    10. Martin Rypdal & Ola L{o}vsletten, 2012. "Modeling electricity spot prices using mean-reverting multifractal processes," Papers 1201.6137, arXiv.org.
    11. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
    12. Rypdal, Martin & Løvsletten, Ola, 2013. "Modeling electricity spot prices using mean-reverting multifractal processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 194-207.
    13. Alvarez-Ramirez, J. & Escarela-Perez, R. & Espinosa-Perez, G. & Urrea, R., 2009. "Dynamics of electricity market correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2173-2188.
    14. Alvarez-Ramirez, Jose & Escarela-Perez, Rafael, 2010. "Time-dependent correlations in electricity markets," Energy Economics, Elsevier, vol. 32(2), pages 269-277, March.
    15. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601, December.
    16. Marossy, Zita, 2011. "A villamos energia áralakulásának egy új modellje [A new model for price movement in electric power]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(3), pages 253-274.
    17. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    18. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.
    19. Kyritsis, Evangelos & Andersson, Jonas & Serletis, Apostolos, 2017. "Electricity prices, large-scale renewable integration, and policy implications," Energy Policy, Elsevier, vol. 101(C), pages 550-560.
    20. Zhang, Guofu & Li, Jingjing, 2018. "Multifractal analysis of Shanghai and Hong Kong stock markets before and after the connect program," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 611-622.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1309.0582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.