The scale-dependent market trend: Empirical evidences using the lagged DFA method
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2015.03.034
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ladislav Kristoufek & Miloslav Vosvrda, 2014.
"Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy,"
The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
- Ladislav Kristoufek & Miloslav Vosvrda, 2013. "Measuring capital market efficiency: Long-term memory, fractal dimension and approximate entropy," Papers 1307.3060, arXiv.org, revised May 2014.
- Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Measuring capital market efficiency: Long-term memory, fractal dimension and approximate entropy," FinMaP-Working Papers 18, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Grech, D & Mazur, Z, 2004. "Can one make any crash prediction in finance using the local Hurst exponent idea?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 133-145.
- Barunik, Jozef & Kristoufek, Ladislav, 2010.
"On Hurst exponent estimation under heavy-tailed distributions,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
- Jozef Barunik & Ladislav Kristoufek, 2012. "On Hurst exponent estimation under heavy-tailed distributions," Papers 1201.4786, arXiv.org.
- Alvarez-Ramirez, Jose & Alvarez, Jesus & Solis, Ricardo, 2010. "Crude oil market efficiency and modeling: Insights from the multiscaling autocorrelation pattern," Energy Economics, Elsevier, vol. 32(5), pages 993-1000, September.
- Di Matteo, T. & Aste, T. & Dacorogna, M.M., 2003. "Scaling behaviors in differently developed markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 183-188.
- Kristoufek, Ladislav & Vosvrda, Miloslav, 2013.
"Measuring capital market efficiency: Global and local correlations structure,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
- Ladislav Kristoufek & Miloslav Vosvrda, 2012. "Measuring capital market efficiency: Global and local correlations structure," Papers 1208.1298, arXiv.org.
- Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo, 2008. "Short-term predictability of crude oil markets: A detrended fluctuation analysis approach," Energy Economics, Elsevier, vol. 30(5), pages 2645-2656, September.
- Xie, Wen-Jie & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2014.
"Extreme value statistics and recurrence intervals of NYMEX energy futures volatility,"
Economic Modelling, Elsevier, vol. 36(C), pages 8-17.
- Wen-Jie Xie & Zhi-Qiang Jiang & Wei-Xing Zhou, 2012. "Extreme value statistics and recurrence intervals of NYMEX energy futures volatility," Papers 1211.5502, arXiv.org.
- Grech, Dariusz & Pamuła, Grzegorz, 2008. "The local Hurst exponent of the financial time series in the vicinity of crashes on the Polish stock exchange market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4299-4308.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Rowe,J. W. F., 2014. "Markets and Men," Cambridge Books, Cambridge University Press, number 9781107675001, November.
- Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
- Wang, Yudong & Wu, Chongfeng, 2012. "What can we learn from the history of gasoline crack spreads?: Long memory, structural breaks and modeling implications," Economic Modelling, Elsevier, vol. 29(2), pages 349-360.
- Lo, Andrew W, 1991.
"Long-Term Memory in Stock Market Prices,"
Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
- Andrew W. Lo, 1989. "Long-term Memory in Stock Market Prices," NBER Working Papers 2984, National Bureau of Economic Research, Inc.
- Lo, Andrew W. (Andrew Wen-Chuan), 1989. "Long-term memory in stock market prices," Working papers 3014-89., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Li, Da-Ye & Nishimura, Yusaku & Men, Ming, 2014. "Fractal markets: Liquidity and investors on different time horizons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 144-151.
- Kaushik Matia & Yosef Ashkenazy & H. Eugene Stanley, 2003. "Multifractal Properties of Price Fluctuations of Stocks and Commodities," Papers cond-mat/0308012, arXiv.org.
- T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
- Couillard, Michel & Davison, Matt, 2005. "A comment on measuring the Hurst exponent of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 404-418.
- Matos, José A.O. & Gama, Sílvio M.A. & Ruskin, Heather J. & Sharkasi, Adel Al & Crane, Martin, 2008. "Time and scale Hurst exponent analysis for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3910-3915.
- Stavros Stavroyiannis & Vassilis Nikolaidis & Ilias A. Makris, 2011. "On the multifractal properties and the local multifractality sensitivity index of euro to Japanese yen foreign currency exchange rates," Global Business and Economics Review, Inderscience Enterprises Ltd, vol. 13(1), pages 93-103.
- Ladislav Krištoufek, 2010. "Rescaled Range Analysis and Detrended Fluctuation Analysis: Finite Sample Properties and Confidence Intervals," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 4(3), pages 315-329, November.
- Wang, Yudong & Liu, Li, 2010. "Is WTI crude oil market becoming weakly efficient over time?: New evidence from multiscale analysis based on detrended fluctuation analysis," Energy Economics, Elsevier, vol. 32(5), pages 987-992, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Oussama Tilfani & Paulo Ferreira & My Youssef El Boukfaoui, 2021. "Dynamic cross-correlation and dynamic contagion of stock markets: a sliding windows approach with the DCCA correlation coefficient," Empirical Economics, Springer, vol. 60(3), pages 1127-1156, March.
- Matthieu Garcin, 2019. "Hurst Exponents And Delampertized Fractional Brownian Motions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-26, August.
- Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "The long memory and the transaction cost in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 312-320.
- Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "Why the long-term auto-correlation has not been eliminated by arbitragers: Evidences from NYMEX," Energy Economics, Elsevier, vol. 59(C), pages 167-178.
- Daye Li & Rongrong Li & Qiankun Sun, 2017. "How the heterogeneity in investment horizons affects market trends," Applied Economics, Taylor & Francis Journals, vol. 49(15), pages 1473-1482, March.
- He, Hong-di & Wang, Jun-li & Wei, Hai-rui & Ye, Cheng & Ding, Yi, 2016. "Fractal behavior of traffic volume on urban expressway through adaptive fractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 518-525.
- Ali, Hakim & Masih, Mansur, 2016. "Evidence of cross-country portfolio diversification benefits: The case of Saudi Arabia," MPRA Paper 72180, University Library of Munich, Germany.
- Ben Moews & Gbenga Ibikunle, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Papers 2002.10385, arXiv.org.
- Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
- Matthieu Garcin, 2018. "Hurst exponents and delampertized fractional Brownian motions," Working Papers hal-01919754, HAL.
- Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
- Ma, Pengcheng & Li, Daye & Li, Shuo, 2016. "Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 163-176.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "The long memory and the transaction cost in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 312-320.
- Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "Why the long-term auto-correlation has not been eliminated by arbitragers: Evidences from NYMEX," Energy Economics, Elsevier, vol. 59(C), pages 167-178.
- Ma, Pengcheng & Li, Daye & Li, Shuo, 2016. "Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 163-176.
- Kristoufek, Ladislav, 2019.
"Are the crude oil markets really becoming more efficient over time? Some new evidence,"
Energy Economics, Elsevier, vol. 82(C), pages 253-263.
- Ladislav Kristoufek, 2018. "Are the Crude Oil Markets Really Becoming More Efficient over Time? Some New Evidence," Working Papers IES 2018/07, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Feb 2018.
- Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
- Kristoufek, Ladislav & Vosvrda, Miloslav, 2014.
"Commodity futures and market efficiency,"
Energy Economics, Elsevier, vol. 42(C), pages 50-57.
- Ladislav Kristoufek & Miloslav Vosvrda, 2013. "Commodity futures and market efficiency," Papers 1309.1492, arXiv.org.
- Ladislav Kristoufek & Miloslav Vosvrda, 2014.
"Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy,"
The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
- Ladislav Kristoufek & Miloslav Vosvrda, 2013. "Measuring capital market efficiency: Long-term memory, fractal dimension and approximate entropy," Papers 1307.3060, arXiv.org, revised May 2014.
- Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Measuring capital market efficiency: Long-term memory, fractal dimension and approximate entropy," FinMaP-Working Papers 18, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Benjamin Rainer Auer, 2018. "Are standard asset pricing factors long-range dependent?," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 42(1), pages 66-88, January.
- Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "Efficiency of Thai stock markets: Detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 204-209.
- Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
- A. Gómez-Águila & J. E. Trinidad-Segovia & M. A. Sánchez-Granero, 2022. "Improvement in Hurst exponent estimation and its application to financial markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
- Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "The influence of trading volume on market efficiency: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 259-265.
- Anagnostidis, P. & Varsakelis, C. & Emmanouilides, C.J., 2016. "Has the 2008 financial crisis affected stock market efficiency? The case of Eurozone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 116-128.
- Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
- Ruan, Qingsong & Jiang, Wei & Ma, Guofeng, 2016. "Cross-correlations between price and volume in Chinese gold markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 10-22.
- Kristoufek, Ladislav & Vosvrda, Miloslav, 2016.
"Gold, currencies and market efficiency,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 27-34.
- Ladislav Kristoufek & Miloslav Vosvrda, 2015. "Gold, currencies and market efficiency," Papers 1510.08615, arXiv.org.
- Kristoufek, Ladislav, 2012.
"How are rescaled range analyses affected by different memory and distributional properties? A Monte Carlo study,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4252-4260.
- Ladislav Kristoufek, 2012. "How are rescaled range analyses affected by different memory and distributional properties? A Monte Carlo study," Papers 1201.3511, arXiv.org.
- Kristoufek, Ladislav, 2010. "On spurious anti-persistence in the US stock indices," Chaos, Solitons & Fractals, Elsevier, vol. 43(1), pages 68-78.
- Kristoufek, Ladislav & Vosvrda, Miloslav, 2013.
"Measuring capital market efficiency: Global and local correlations structure,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
- Ladislav Kristoufek & Miloslav Vosvrda, 2012. "Measuring capital market efficiency: Global and local correlations structure," Papers 1208.1298, arXiv.org.
- Wang, Yudong & Wu, Chongfeng & Pan, Zhiyuan, 2011. "Multifractal detrending moving average analysis on the US Dollar exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3512-3523.
More about this item
Keywords
Hurst exponent; Long-term trend; Scale-dependent;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:433:y:2015:i:c:p:26-35. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.