IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i3p348-d328579.html
   My bibliography  Save this article

Some Notes on the Formation of a Pair in Pairs Trading

Author

Listed:
  • José Pedro Ramos-Requena

    (Department of Economics and Business, University of Almería, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain)

  • Juan Evangelista Trinidad-Segovia

    (Department of Economics and Business, University of Almería, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain)

  • Miguel Ángel Sánchez-Granero

    (Department of Matematics, University of Almería, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain)

Abstract

The main goal of the paper is to introduce different models to calculate the amount of money that must be allocated to each stock in a statistical arbitrage technique known as pairs trading. The traditional allocation strategy is based on an equal weight methodology. However, we will show how, with an optimal allocation, the performance of pairs trading increases significantly. Four methodologies are proposed to set up the optimal allocation. These methodologies are based on distance, correlation, cointegration and Hurst exponent (mean reversion). It is showed that the new methodologies provide an improvement in the obtained results with respect to an equal weighted strategy.

Suggested Citation

  • José Pedro Ramos-Requena & Juan Evangelista Trinidad-Segovia & Miguel Ángel Sánchez-Granero, 2020. "Some Notes on the Formation of a Pair in Pairs Trading," Mathematics, MDPI, vol. 8(3), pages 1-17, March.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:3:p:348-:d:328579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/3/348/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/3/348/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ladislav Kristoufek & Miloslav Vosvrda, 2014. "Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
    2. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
    3. Christian L Dunis & Richard Ho, 2005. "Cointegration portfolios of European equities for index tracking and market neutral strategies," Journal of Asset Management, Palgrave Macmillan, vol. 6(1), pages 33-52, June.
    4. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    5. Sánchez-Granero, M.A. & Balladares, K.A. & Ramos-Requena, J.P. & Trinidad-Segovia, J.E., 2020. "Testing the efficient market hypothesis in Latin American stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    7. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    8. T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
    9. Miguel Ángel Sánchez & Juan E Trinidad & José García & Manuel Fernández, 2015. "The Effect of the Underlying Distribution in Hurst Exponent Estimation," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-17, May.
    10. repec:bla:eufman:v:4:y:1998:i:1:p:91-103 is not listed on IDEAS
    11. Hanxiong Zhang & Andrew Urquhart, 2019. "Pairs trading across Mainland China and Hong Kong stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(2), pages 698-726, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mar Grande & Florentino Borondo & Juan Carlos Losada & Javier Borondo, 2024. "Anti-Persistent Values of the Hurst Exponent Anticipate Mean Reversion in Pairs Trading: The Cryptocurrencies Market as a Case Study," Mathematics, MDPI, vol. 12(18), pages 1-14, September.
    2. Lucas Schneider & Johannes Stübinger, 2020. "Dispersion Trading Based on the Explanatory Power of S&P 500 Stock Returns," Mathematics, MDPI, vol. 8(9), pages 1-22, September.
    3. He, Fuli & Yarahmadi, Ali & Soleymani, Fazlollah, 2024. "Investigation of multivariate pairs trading under copula approach with mixture distribution," Applied Mathematics and Computation, Elsevier, vol. 472(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristoufek, Ladislav & Vosvrda, Miloslav, 2016. "Gold, currencies and market efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 27-34.
    2. Kristoufek, Ladislav, 2018. "On Bitcoin markets (in)efficiency and its evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 257-262.
    3. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "The influence of trading volume on market efficiency: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 259-265.
    4. Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Commodity futures and market efficiency," Energy Economics, Elsevier, vol. 42(C), pages 50-57.
    5. Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
    6. Sánchez-Granero, M.A. & Balladares, K.A. & Ramos-Requena, J.P. & Trinidad-Segovia, J.E., 2020. "Testing the efficient market hypothesis in Latin American stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    7. Miguel Ángel Sánchez & Juan E Trinidad & José García & Manuel Fernández, 2015. "The Effect of the Underlying Distribution in Hurst Exponent Estimation," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-17, May.
    8. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
    9. Ma, Pengcheng & Li, Daye & Li, Shuo, 2016. "Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 163-176.
    10. Shahzad, Syed Jawad Hussain & Hernandez, Jose Areola & Hanif, Waqas & Kayani, Ghulam Mujtaba, 2018. "Intraday return inefficiency and long memory in the volatilities of forex markets and the role of trading volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 433-450.
    11. A. Gómez-Águila & J. E. Trinidad-Segovia & M. A. Sánchez-Granero, 2022. "Improvement in Hurst exponent estimation and its application to financial markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    12. V Dimitrova & M Fernández-Martínez & M A Sánchez-Granero & J E Trinidad Segovia, 2019. "Some comments on Bitcoin market (in)efficiency," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-14, July.
    13. Ladislav Kristoufek & Miloslav Vosvrda, 2014. "Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
    14. Dima, Bogdan & Dima, Ştefana Maria, 2017. "Mutual information and persistence in the stochastic volatility of market returns: An emergent market example," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 36-59.
    15. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "Efficiency of Thai stock markets: Detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 204-209.
    16. Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "The long memory and the transaction cost in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 312-320.
    17. Li, Daye & Kou, Zhun & Sun, Qiankun, 2015. "The scale-dependent market trend: Empirical evidences using the lagged DFA method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 26-35.
    18. Anagnostidis, P. & Varsakelis, C. & Emmanouilides, C.J., 2016. "Has the 2008 financial crisis affected stock market efficiency? The case of Eurozone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 116-128.
    19. Karen Balladares & José Pedro Ramos-Requena & Juan Evangelista Trinidad-Segovia & Miguel Angel Sánchez-Granero, 2021. "Statistical Arbitrage in Emerging Markets: A Global Test of Efficiency," Mathematics, MDPI, vol. 9(2), pages 1-20, January.
    20. Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:3:p:348-:d:328579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.