My bibliography
Save this item
Statistical Computing in Functional Data Analysis: The R Package fda.usc
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski & Małgorzata Snarska, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 331-350, June.
- Adriano Zanin Zambom & Julian A. A. Collazos & Ronaldo Dias, 2019. "Functional data clustering via hypothesis testing k-means," Computational Statistics, Springer, vol. 34(2), pages 527-549, June.
- Slaoui, Yousri, 2019. "Wild bootstrap bandwidth selection of recursive nonparametric relative regression for independent functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 494-511.
- Moritz Herrmann & Fabian Scheipl, 2021. "A Geometric Perspective on Functional Outlier Detection," Stats, MDPI, vol. 4(4), pages 1-41, November.
- Daniel Kosiorowski & Jerzy P. Rydlewski & Ma{l}gorzata Snarska, 2016. "Detecting a Structural Change in Functional Time Series Using Local Wilcoxon Statistic," Papers 1604.03776, arXiv.org, revised Oct 2019.
- Jiang, Qing & Hušková, Marie & Meintanis, Simos G. & Zhu, Lixing, 2019. "Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 202-220.
- Daniel Hlubinka & Irène Gijbels & Marek Omelka & Stanislav Nagy, 2015. "Integrated data depth for smooth functions and its application in supervised classification," Computational Statistics, Springer, vol. 30(4), pages 1011-1031, December.
- Zhang, Jin-Ting & Zhu, Tianming, 2022. "A new normal reference test for linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Eduardo Doval & Pedro Delicado, 2020. "Identifying and Classifying Aberrant Response Patterns Through Functional Data Analysis," Journal of Educational and Behavioral Statistics, , vol. 45(6), pages 719-749, December.
- Mirosław Krzyśko & Łukasz Smaga, 2024. "Application of distance standard deviation in functional data analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 431-454, June.
- Carrizosa, Emilio & Kurishchenko, Kseniia & Marín, Alfredo & Romero Morales, Dolores, 2022. "Interpreting clusters via prototype optimization," Omega, Elsevier, vol. 107(C).
- José R. Berrendero & Beatriz Bueno-Larraz & Antonio Cuevas, 2023. "On functional logistic regression: some conceptual issues," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 321-349, March.
- Blanquero, R. & Carrizosa, E. & Jiménez-Cordero, A. & Martín-Barragán, B., 2019. "Functional-bandwidth kernel for Support Vector Machine with Functional Data: An alternating optimization algorithm," European Journal of Operational Research, Elsevier, vol. 275(1), pages 195-207.
- Yousri Slaoui, 2021. "Recursive non-parametric kernel classification rule estimation for independent functional data," Computational Statistics, Springer, vol. 36(1), pages 79-112, March.
- Sokhna Dieng & Pierre Michel & Abdoulaye Guindo & Kankoe Sallah & El-Hadj Ba & Badara Cissé & Maria Patrizia Carrieri & Cheikh Sokhna & Paul Milligan & Jean Gaudart, 2020.
"Application of Functional Data Analysis to Identify Patterns of Malaria Incidence, to Guide Targeted Control Strategies,"
IJERPH, MDPI, vol. 17(11), pages 1-23, June.
- Sokhna Dieng & Pierre Michel & Abdoulaye Guindo & Kankoé L Sallah & El-Hadj Ba & Badara Cisse & Maria Patrizia Carrieri & Cheikh Sokhna & Paul Milligan & Jean Gaudart, 2020. "Application of Functional Data Analysis to Identify Patterns of Malaria Incidence, to Guide Targeted Control Strategies," Post-Print hal-02866666, HAL.
- Wang, Xianlong & Qu, Annie, 2014. "Efficient classification for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 119-134.
- Ludwig Bothmann & Michael Windmann & Göran Kauermann, 2016. "Realtime classification of fish in underwater sonar videos," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 565-584, August.
- Majumdar, Subhabrata & Chatterjee, Snigdhansu, 2022. "On weighted multivariate sign functions," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
- Antonio Elías & Raúl Jiménez & J. E. Yukich, 2023. "Localization processes for functional data analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 485-517, June.
- Boente, Graciela & Parada, Daniela, 2023. "Robust estimation for functional quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Manuel Oviedo-de la Fuente & Carlos Cabo & Celestino Ordóñez & Javier Roca-Pardiñas, 2021. "A Distance Correlation Approach for Optimum Multiscale Selection in 3D Point Cloud Classification," Mathematics, MDPI, vol. 9(12), pages 1-19, June.
- Laura Freijeiro‐González & Manuel Febrero‐Bande & Wenceslao González‐Manteiga, 2022. "A Critical Review of LASSO and Its Derivatives for Variable Selection Under Dependence Among Covariates," International Statistical Review, International Statistical Institute, vol. 90(1), pages 118-145, April.
- Febrero-Bande, Manuel & González-Manteiga, Wenceslao & Prallon, Brenda & Saporito, Yuri F., 2023. "Functional classification of bitcoin addresses," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
- Eduardo García‐Portugués & Javier Álvarez‐Liébana & Gonzalo Álvarez‐Pérez & Wenceslao González‐Manteiga, 2021. "A goodness‐of‐fit test for the functional linear model with functional response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 502-528, June.
- Fabrizio Maturo & Antonio Balzanella & Tonio Di Battista, 2019. "Building Statistical Indicators of Equitable and Sustainable Well-Being in a Functional Framework," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(3), pages 449-471, December.
- Ana Justel & Marcela Svarc, 2018. "A divisive clustering method for functional data with special consideration of outliers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 637-656, September.
- Diego Rivera-García & Luis A. García-Escudero & Agustín Mayo-Iscar & Joaquín Ortega, 2019. "Robust clustering for functional data based on trimming and constraints," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 201-225, March.
- Dai, Wenlin & Mrkvička, Tomáš & Sun, Ying & Genton, Marc G., 2020. "Functional outlier detection and taxonomy by sequential transformations," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
- Kosiorowski Daniel & Mielczarek Dominik & Rydlewski Jerzy P. & Snarska Małgorzata, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Statistics Poland, vol. 19(2), pages 331-350, June.
- Daniel Kosiorowski, 2014. "Functional Regression in Short-Term Prediction of Economic Time Series," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(4), pages 611-626, September.
- Manuel Febrero-Bande & Wenceslao González-Manteiga & Manuel Oviedo de la Fuente, 2019. "Variable selection in functional additive regression models," Computational Statistics, Springer, vol. 34(2), pages 469-487, June.
- Goldsmith, Jeff & Scheipl, Fabian, 2014. "Estimator selection and combination in scalar-on-function regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 362-372.
- François Freddy Ateba & Manuel Febrero-Bande & Issaka Sagara & Nafomon Sogoba & Mahamoudou Touré & Daouda Sanogo & Ayouba Diarra & Andoh Magdalene Ngitah & Peter J. Winch & Jeffrey G. Shaffer & Donald, 2020. "Predicting Malaria Transmission Dynamics in Dangassa, Mali: A Novel Approach Using Functional Generalized Additive Models," IJERPH, MDPI, vol. 17(17), pages 1-16, August.
- Sarah K Kendrick & Qi Zheng & Nichola C Garbett & Guy N Brock, 2017. "Application and interpretation of functional data analysis techniques to differential scanning calorimetry data from lupus patients," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-21, November.
- Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
- Deqing Wang & Zhangqi Zhong & Kaixu Bai & Lingyun He, 2019. "Spatial and Temporal Variabilities of PM 2.5 Concentrations in China Using Functional Data Analysis," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
- Manuel Oviedo de la Fuente & Carlos Cabo & Javier Roca-Pardiñas & E. Louise Loudermilk & Celestino Ordóñez, 2024. "3D Point Cloud Semantic Segmentation Through Functional Data Analysis," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 723-744, December.
- Boente, Graciela & Salibian-Barrera, Matías & Vena, Pablo, 2020. "Robust estimation for semi-functional linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- Pini, Alessia & Sørensen, Helle & Tolver, Anders & Vantini, Simone, 2023. "Local inference for functional linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
- Jorge R. Sosa Donoso & Miguel Flores & Salvador Naya & Javier Tarrío-Saavedra, 2023. "Local Correlation Integral Approach for Anomaly Detection Using Functional Data," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
- Francesca Fortuna & Fabrizio Maturo, 2019. "K-means clustering of item characteristic curves and item information curves via functional principal component analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2291-2304, September.
- Feliu Serra-Burriel & Pedro Delicado & Fernando M. Cucchietti, 2021. "Wildfires Vegetation Recovery through Satellite Remote Sensing and Functional Data Analysis," Mathematics, MDPI, vol. 9(11), pages 1-22, June.
- Oluwasegun Taiwo Ojo & Antonio Fernández Anta & Rosa E. Lillo & Carlo Sguera, 2022. "Detecting and classifying outliers in big functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 725-760, September.
- Guardiola, I.G. & Leon, T. & Mallor, F., 2014. "A functional approach to monitor and recognize patterns of daily traffic profiles," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 119-136.
- Fabrizio Maturo & Francesca Fortuna & Tonio Di Battista, 2024. "Outliers detection in assessment tests’ quality evaluation through the blended use of functional data analysis and item response theory," Annals of Operations Research, Springer, vol. 342(3), pages 1547-1562, November.
- J. A. Cuesta-Albertos & M. Febrero-Bande & M. Oviedo de la Fuente, 2017. "The $$\hbox {DD}^G$$ DD G -classifier in the functional setting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 119-142, March.
- Antonio Elías & Raúl Jiménez & Han Lin Shang, 2023. "Depth-based reconstruction method for incomplete functional data," Computational Statistics, Springer, vol. 38(3), pages 1507-1535, September.
- Tomáš Mrkvička & Tomáš Roskovec & Michael Rost, 2021. "A Nonparametric Graphical Tests of Significance in Functional GLM," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 593-612, June.
- Manuel Oviedo-de La Fuente & Celestino Ordóñez & Javier Roca-Pardiñas, 2020. "Functional Location-Scale Model to Forecast Bivariate Pollution Episodes," Mathematics, MDPI, vol. 8(6), pages 1-12, June.
- Tao Zhang & Zhiwen Wang & Yanling Wan, 2021. "Functional test for high-dimensional covariance matrix, with application to mitochondrial calcium concentration," Statistical Papers, Springer, vol. 62(3), pages 1213-1230, June.
- Merve Yasemin Tekbudak & Marcela Alfaro-Córdoba & Arnab Maity & Ana-Maria Staicu, 2019. "A comparison of testing methods in scalar-on-function regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(3), pages 411-436, September.
- Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
- Ahn, Kyungmin & Tucker, J. Derek & Wu, Wei & Srivastava, Anuj, 2020. "Regression models using shapes of functions as predictors," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
- Ruiyuan Cao & Jiang Du & Jianjun Zhou & Tianfa Xie, 2020. "FPCA-based estimation for generalized functional partially linear models," Statistical Papers, Springer, vol. 61(6), pages 2715-2735, December.
- Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
- Cristina Anton & Iain Smith, 2024. "Model-based clustering of functional data via mixtures of t distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 563-595, September.
- Fabrizio Maturo & Rosanna Verde, 2023. "Supervised classification of curves via a combined use of functional data analysis and tree-based methods," Computational Statistics, Springer, vol. 38(1), pages 419-459, March.
- Tomasz Górecki & Łukasz Smaga, 2019. "fdANOVA: an R software package for analysis of variance for univariate and multivariate functional data," Computational Statistics, Springer, vol. 34(2), pages 571-597, June.
- Guillermo Vinue & Irene Epifanio, 2021. "Robust archetypoids for anomaly detection in big functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 437-462, June.
- Jonghyun Yun & Sanggoo Kang & Amin Darabnoush Tehrani & Suyun Ham, 2020. "Image Analysis and Functional Data Clustering for Random Shape Aggregate Models," Mathematics, MDPI, vol. 8(11), pages 1-21, October.
- Acal, C. & Aguilera, A.M. & Alonso, F.J. & Ruiz-Castro, J.E. & Roldán, J.B., 2024. "Different PCA approaches for vector functional time series with applications to resistive switching processes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 288-298.
- Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
- Daniel Kosiorowski & Jerzy P. Rydlewski & Małgorzata Snarska, 2019. "Detecting a structural change in functional time series using local Wilcoxon statistic," Statistical Papers, Springer, vol. 60(5), pages 1677-1698, October.
- Majid Mojirsheibani, 2024. "Strong optimality of kernel functional regression in $$L^p$$ L p norms with partial response variables and applications," Statistical Papers, Springer, vol. 65(9), pages 5615-5648, December.
- Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski, 2017. "Aggregated moving functional median in robust prediction of hierarchical functional time series - an application to forecasting web portal users behaviors," Papers 1710.02669, arXiv.org, revised Jul 2018.
- Ruzong Fan & Hong-Bin Fang, 2022. "Stochastic functional linear models and Malliavin calculus," Computational Statistics, Springer, vol. 37(2), pages 591-611, April.
- José R. Berrendero & Alejandro Cholaquidis & Antonio Cuevas, 2024. "On the functional regression model and its finite-dimensional approximations," Statistical Papers, Springer, vol. 65(8), pages 5167-5201, October.