IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v53y2019i5d10.1007_s11135-018-0724-7.html
   My bibliography  Save this article

K-means clustering of item characteristic curves and item information curves via functional principal component analysis

Author

Listed:
  • Francesca Fortuna

    (“G. d’ Annunzio” University)

  • Fabrizio Maturo

    (“G. d’ Annunzio” University)

Abstract

The assessment of students’ performances and learning skills plays a key role in the educational context. Common tools for analyzing test data are item response theory (IRT) models. They bring interesting outputs such as item characteristic curves (ICCs) and item information curves (IICs), which provide the probability of correctly answering items and the amount of information for different ability levels, respectively. In recent decades, many studies have pointed out the importance of clustering methods in the IRT context. Nevertheless, tests assessment through IRT models and the related clustering algorithms generally focus on the analysis of item parameters. These approaches are certainly more simple but parameters are synthetic indicators of a function’s behavior, and thus some interesting information within the domain may be lost. Because ICCs and IICs are functions in a continuous domain (the subject ability), this research proposes to treat them with the functional data analysis (FDA) approach. Specifically, this study focuses on the use of the K-means clustering method for analysing ICCs and IICs via the functional principal component analysis. We show that the combined use of FDA and cluster analysis reveals interesting insights in the IRT context. The final aim of this approach is to provide practitioners and scholars with additional tools for the assessment of tests for students’ evaluation.

Suggested Citation

  • Francesca Fortuna & Fabrizio Maturo, 2019. "K-means clustering of item characteristic curves and item information curves via functional principal component analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2291-2304, September.
  • Handle: RePEc:spr:qualqt:v:53:y:2019:i:5:d:10.1007_s11135-018-0724-7
    DOI: 10.1007/s11135-018-0724-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-018-0724-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-018-0724-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Biagio Simonetti & Pasquale Sarnacchiaro & M. Rosario González Rodríguez, 2017. "Goodness of fit measures for logistic regression model: an application for students’ evaluations of university teaching," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2545-2554, November.
    2. Febrero-Bande, Manuel & de la Fuente, Manuel Oviedo, 2012. "Statistical Computing in Functional Data Analysis: The R Package fda.usc," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i04).
    3. J. Ramsay & S. Winsberg, 1991. "Maximum marginal likelihood estimation for semiparametric item analysis," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 365-379, September.
    4. Jeffrey Douglas, 2001. "Asymptotic identifiability of nonparametric item response models," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 531-540, December.
    5. Merton S. Krause, 2017. "Item response theory requires logically unjustifiable assumptions," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(4), pages 1549-1561, July.
    6. Mariagiulia Matteucci & Bernard Veldkamp, 2015. "The approach of power priors for ability estimation in IRT models," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 917-926, May.
    7. J. Ramsay, 1991. "Kernel smoothing approaches to nonparametric item characteristic curve estimation," Psychometrika, Springer;The Psychometric Society, vol. 56(4), pages 611-630, December.
    8. Tarpey, Thaddeus, 2007. "Linear Transformations and the k-Means Clustering Algorithm: Applications to Clustering Curves," The American Statistician, American Statistical Association, vol. 61, pages 34-40, February.
    9. Francisco Ocaña & Ana Aguilera & Manuel Escabias, 2007. "Computational considerations in functional principal component analysis," Computational Statistics, Springer, vol. 22(3), pages 449-465, September.
    10. Michela Gnaldi, 2017. "A multidimensional IRT approach for dimensionality assessment of standardised students’ tests in mathematics," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 1167-1182, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Jesus, Diego Pitta & Besarria, Cássio da Nóbrega, 2023. "Machine learning and sentiment analysis: Projecting bank insolvency risk," Research in Economics, Elsevier, vol. 77(2), pages 226-238.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yinqiu He, 2024. "Extended Asymptotic Identifiability of Nonparametric Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 958-973, September.
    2. Leah M. Feuerstahler, 2019. "Metric Transformations and the Filtered Monotonic Polynomial Item Response Model," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 105-123, March.
    3. Fabrizio Maturo & Rosanna Verde, 2023. "Supervised classification of curves via a combined use of functional data analysis and tree-based methods," Computational Statistics, Springer, vol. 38(1), pages 419-459, March.
    4. Christian Genest & Johanna G. Nešlehová, 2014. "A Conversation with James O. Ramsay," International Statistical Review, International Statistical Institute, vol. 82(2), pages 161-183, August.
    5. Yang Liu & Weimeng Wang, 2022. "Semiparametric Factor Analysis for Item-Level Response Time Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 666-692, June.
    6. Jeff Douglas, 1997. "Joint consistency of nonparametric item characteristic curve and ability estimation," Psychometrika, Springer;The Psychometric Society, vol. 62(1), pages 7-28, March.
    7. Mazza, Angelo & Punzo, Antonio & McGuire, Brian, 2014. "KernSmoothIRT: An R Package for Kernel Smoothing in Item Response Theory," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i06).
    8. Longjuan Liang & Michael W. Browne, 2015. "A Quasi-Parametric Method for Fitting Flexible Item Response Functions," Journal of Educational and Behavioral Statistics, , vol. 40(1), pages 5-34, February.
    9. Eduardo Doval & Pedro Delicado, 2020. "Identifying and Classifying Aberrant Response Patterns Through Functional Data Analysis," Journal of Educational and Behavioral Statistics, , vol. 45(6), pages 719-749, December.
    10. Xueli Xu & Jeff Douglas, 2006. "Computerized adaptive testing under nonparametric IRT models," Psychometrika, Springer;The Psychometric Society, vol. 71(1), pages 121-137, March.
    11. Michael Peress, 2012. "Identification of a Semiparametric Item Response Model," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 223-243, April.
    12. Manuel Oviedo-de la Fuente & Carlos Cabo & Celestino Ordóñez & Javier Roca-Pardiñas, 2021. "A Distance Correlation Approach for Optimum Multiscale Selection in 3D Point Cloud Classification," Mathematics, MDPI, vol. 9(12), pages 1-19, June.
    13. Febrero-Bande, Manuel & González-Manteiga, Wenceslao & Prallon, Brenda & Saporito, Yuri F., 2023. "Functional classification of bitcoin addresses," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    14. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    15. Henry Santa-Cruz-Espinoza & Gina Chávez-Ventura & Julio Domínguez-Vergara & César Merino-Soto, 2023. "Internal Structure of the Work–Family Conflict Questionnaire (WFCQ) in Teacher Teleworking," IJERPH, MDPI, vol. 20(2), pages 1-16, January.
    16. Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
    17. Boente, Graciela & Parada, Daniela, 2023. "Robust estimation for functional quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    18. Kosiorowski Daniel & Mielczarek Dominik & Rydlewski Jerzy P. & Snarska Małgorzata, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Statistics Poland, vol. 19(2), pages 331-350, June.
    19. François Freddy Ateba & Manuel Febrero-Bande & Issaka Sagara & Nafomon Sogoba & Mahamoudou Touré & Daouda Sanogo & Ayouba Diarra & Andoh Magdalene Ngitah & Peter J. Winch & Jeffrey G. Shaffer & Donald, 2020. "Predicting Malaria Transmission Dynamics in Dangassa, Mali: A Novel Approach Using Functional Generalized Additive Models," IJERPH, MDPI, vol. 17(17), pages 1-16, August.
    20. Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:53:y:2019:i:5:d:10.1007_s11135-018-0724-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.