Wildfires Vegetation Recovery through Satellite Remote Sensing and Functional Data Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Max A. Moritz & Enric Batllori & Ross A. Bradstock & A. Malcolm Gill & John Handmer & Paul F. Hessburg & Justin Leonard & Sarah McCaffrey & Dennis C. Odion & Tania Schoennagel & Alexandra D. Syphard, 2014. "Learning to coexist with wildfire," Nature, Nature, vol. 515(7525), pages 58-66, November.
- A. Westerling & B. Bryant & H. Preisler & T. Holmes & H. Hidalgo & T. Das & S. Shrestha, 2011. "Climate change and growth scenarios for California wildfire," Climatic Change, Springer, vol. 109(1), pages 445-463, December.
- Febrero-Bande, Manuel & de la Fuente, Manuel Oviedo, 2012. "Statistical Computing in Functional Data Analysis: The R Package fda.usc," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i04).
- Theodore Alexandrov & Silvia Bianconcini & Estela Bee Dagum & Peter Maass & Tucker S. McElroy, 2012. "A Review of Some Modern Approaches to the Problem of Trend Extraction," Econometric Reviews, Taylor & Francis Journals, vol. 31(6), pages 593-624, November.
- Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021.
"Matrix Completion Methods for Causal Panel Data Models,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
- Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2017. "Matrix Completion Methods for Causal Panel Data Models," Papers 1710.10251, arXiv.org, revised Apr 2022.
- Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2018. "Matrix Completion Methods for Causal Panel Data Models," NBER Working Papers 25132, National Bureau of Economic Research, Inc.
- Xu, Yiqing, 2017. "Generalized Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models," Political Analysis, Cambridge University Press, vol. 25(1), pages 57-76, January.
- Antonio Cuevas & Manuel Febrero & Ricardo Fraiman, 2007. "Robust estimation and classification for functional data via projection-based depth notions," Computational Statistics, Springer, vol. 22(3), pages 481-496, September.
- Haiganoush K. Preisler & Benjamin P. Bryant & Anthony L. Westerling, 2014. "Scenarios for future wildfire risk in California: links between changing demography, land use, climate, and wildfire," Environmetrics, John Wiley & Sons, Ltd., vol. 25(6), pages 454-471, September.
- Amatulli, Giuseppe & Peréz-Cabello, Fernando & de la Riva, Juan, 2007. "Mapping lightning/human-caused wildfires occurrence under ignition point location uncertainty," Ecological Modelling, Elsevier, vol. 200(3), pages 321-333.
- Jeff Goldsmith & Vadim Zipunnikov & Jennifer Schrack, 2015. "Generalized multilevel function-on-scalar regression and principal component analysis," Biometrics, The International Biometric Society, vol. 71(2), pages 344-353, June.
- Yanlan Liu & Mukesh Kumar & Gabriel G. Katul & Amilcare Porporato, 2019. "Reduced resilience as an early warning signal of forest mortality," Nature Climate Change, Nature, vol. 9(11), pages 880-885, November.
- Jan Verbesselt & Nikolaus Umlauf & Marina Hirota & Milena Holmgren & Egbert H. Van Nes & Martin Herold & Achim Zeileis & Marten Scheffer, 2016. "Remotely sensed resilience of tropical forests," Nature Climate Change, Nature, vol. 6(11), pages 1028-1031, November.
- Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Timothy M. Lenton & Jesse F. Abrams & Annett Bartsch & Sebastian Bathiany & Chris A. Boulton & Joshua E. Buxton & Alessandra Conversi & Andrew M. Cunliffe & Sophie Hebden & Thomas Lavergne & Benjamin , 2024. "Remotely sensing potential climate change tipping points across scales," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
- Irene Botosaru & Bruno Ferman, 2019.
"On the role of covariates in the synthetic control method,"
The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 117-130.
- Botosaru, Irene & Ferman, Bruno, 2017. "On the Role of Covariates in the Synthetic Control Method," MPRA Paper 80796, University Library of Munich, Germany.
- Febrero-Bande, Manuel & González-Manteiga, Wenceslao & Prallon, Brenda & Saporito, Yuri F., 2023. "Functional classification of bitcoin addresses," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
- Qili Wang & Liangfei Qiu & Wei Xu, 2024. "Informal Payments and Doctor Engagement in an Online Health Community: An Empirical Investigation Using Generalized Synthetic Control," Information Systems Research, INFORMS, vol. 35(2), pages 706-726, June.
- Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
- Sviták, Jan & Tichem, Jan & Haasbeek, Stefan, 2021. "Price effects of search advertising restrictions," International Journal of Industrial Organization, Elsevier, vol. 77(C).
- Xiong, Ruoxuan & Pelger, Markus, 2023.
"Large dimensional latent factor modeling with missing observations and applications to causal inference,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
- Ruoxuan Xiong & Markus Pelger, 2019. "Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference," Papers 1910.08273, arXiv.org, revised Jan 2022.
- Tomasz Serwach, 2023. "The European Union and within‐country income inequalities. The case of the new member states," The World Economy, Wiley Blackwell, vol. 46(7), pages 1890-1939, July.
- Michał Marcin Kobierecki & Michał Pierzgalski, 2022. "Sports Mega-Events and Economic Growth: A Synthetic Control Approach," Journal of Sports Economics, , vol. 23(5), pages 567-597, June.
- Stefano, Roberta di & Mellace, Giovanni, 2020.
"The inclusive synthetic control method,"
Discussion Papers on Economics
14/2020, University of Southern Denmark, Department of Economics.
- Roberta Di Stefano & Giovanni Mellace, 2020. "The inclusive synthetic control method," Working Papers 21/20, Sapienza University of Rome, DISS.
- Roberta Di Stefano & Giovanni Mellace, 2024. "The inclusive Synthetic Control Method," Papers 2403.17624, arXiv.org.
- Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
- Tomasz Serwach, 2022. "The European Union and within-country income inequalities. The case of the New Member States," Working Papers hal-03548416, HAL.
- Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2021.
"An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1849-1864, October.
- Victor Chernozhukov & Kaspar Wüthrich & Yu Zhu, 2017. "An exact and robust conformal inference method for counterfactual and synthetic controls," CeMMAP working papers CWP62/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2017. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Papers 1712.09089, arXiv.org, revised May 2021.
- Victor Chernozhukov & Kaspar Wüthrich & Yu Zhu, 2017. "An exact and robust conformal inference method for counterfactual and synthetic controls," CeMMAP working papers 62/17, Institute for Fiscal Studies.
- Chernozhukov, Victor & Wüthrich, Kaspar & Zhu, Yinchu, 2021. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," University of California at San Diego, Economics Working Paper Series qt90m9d66s, Department of Economics, UC San Diego.
- Eli Ben‐Michael & Avi Feller & Jesse Rothstein, 2022.
"Synthetic controls with staggered adoption,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 351-381, April.
- Eli Ben-Michael & Avi Feller & Jesse Rothstein, 2019. "Synthetic Controls with Staggered Adoption," Papers 1912.03290, arXiv.org, revised Jan 2021.
- Eli Ben-Michael & Avi Feller & Jesse Rothstein, 2021. "Synthetic Controls with Staggered Adoption," NBER Working Papers 28886, National Bureau of Economic Research, Inc.
- Daniel Kosiorowski & Jerzy P. Rydlewski & Małgorzata Snarska, 2019. "Detecting a structural change in functional time series using local Wilcoxon statistic," Statistical Papers, Springer, vol. 60(5), pages 1677-1698, October.
- Sandro Heiniger, 2024. "Data-driven model selection within the matrix completion method for causal panel data models," Papers 2402.01069, arXiv.org.
- Giulio Grossi & Marco Mariani & Alessandra Mattei & Patrizia Lattarulo & Ozge Oner, 2020. "Direct and spillover effects of a new tramway line on the commercial vitality of peripheral streets. A synthetic-control approach," Papers 2004.05027, arXiv.org, revised Nov 2023.
- Ji Yun Lee & Fangjiao Ma & Yue Li, 2022. "Understanding homeowner proactive actions for managing wildfire risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1525-1547, November.
- David Gilchrist & Thomas Emery & Nuno Garoupa & Rok Spruk, 2023. "Synthetic Control Method: A tool for comparative case studies in economic history," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 409-445, April.
More about this item
Keywords
causal inference; functional data analysis; functional principal components analysis; function-on-scalar regression; landsat; NDVI; remote sensing; synthetic controls; time series decomposition; wildfires;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:11:p:1305-:d:570115. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.