IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v18y2024i2d10.1007_s11634-023-00538-6.html
   My bibliography  Save this article

Application of distance standard deviation in functional data analysis

Author

Listed:
  • Mirosław Krzyśko

    (Calisia University-Kalisz)

  • Łukasz Smaga

    (Adam Mickiewicz University)

Abstract

This paper concerns the measurement and testing of equality of variability of functional data. We apply the distance standard deviation constructed based on distance correlation, which was recently introduced as a measure of spread. For functional data, the distance standard deviation seems to measure different kinds of variability, not only scale differences. Moreover, the distance standard deviation is just one real number, and for this reason, it is of more practical value than the covariance function, which is a more difficult object to interpret. For testing equality of variability in two groups, we propose a permutation method based on centered observations, which controls the type I error level much better than the standard permutation method. We also consider the applicability of other correlations to measure the variability of functional data. The finite sample properties of two-sample tests are investigated in extensive simulation studies. We also illustrate their use in five real data examples based on various data sets.

Suggested Citation

  • Mirosław Krzyśko & Łukasz Smaga, 2024. "Application of distance standard deviation in functional data analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 431-454, June.
  • Handle: RePEc:spr:advdac:v:18:y:2024:i:2:d:10.1007_s11634-023-00538-6
    DOI: 10.1007/s11634-023-00538-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-023-00538-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-023-00538-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Jia & Zhou, Bu & Zhang, Jin-Ting, 2018. "Testing the equality of several covariance functions for functional data: A supremum-norm based test," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 15-26.
    2. Febrero-Bande, Manuel & de la Fuente, Manuel Oviedo, 2012. "Statistical Computing in Functional Data Analysis: The R Package fda.usc," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i04).
    3. David Kraus & Victor M. Panaretos, 2012. "Dispersion operators and resistant second-order functional data analysis," Biometrika, Biometrika Trust, vol. 99(4), pages 813-832.
    4. Runze Li & Wei Zhong & Liping Zhu, 2012. "Feature Screening via Distance Correlation Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1129-1139, September.
    5. Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.
    6. Jia Guo & Bu Zhou & Jin-Ting Zhang, 2019. "New Tests for Equality of Several Covariance Functions for Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1251-1263, July.
    7. Székely, Gábor J. & Rizzo, Maria L., 2013. "The distance correlation t-test of independence in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 193-213.
    8. Tomasz Górecki & Łukasz Smaga, 2019. "fdANOVA: an R software package for analysis of variance for univariate and multivariate functional data," Computational Statistics, Springer, vol. 34(2), pages 571-597, June.
    9. Liping Zhu & Kai Xu & Runze Li & Wei Zhong, 2017. "Projection correlation between two random vectors," Biometrika, Biometrika Trust, vol. 104(4), pages 829-843.
    10. Rosa Arboretti & Fortunato Pesarin & Luigi Salmaso, 2021. "A unified approach to permutation testing for equivalence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1033-1052, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González–Rodríguez, Gil & Colubi, Ana & González–Manteiga, Wenceslao & Febrero–Bande, Manuel, 2024. "A consistent test of equality of distributions for Hilbert-valued random elements," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    2. Zhang, Qingyang, 2019. "Independence test for large sparse contingency tables based on distance correlation," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 17-22.
    3. Manuel Febrero-Bande & Wenceslao González-Manteiga & Manuel Oviedo de la Fuente, 2019. "Variable selection in functional additive regression models," Computational Statistics, Springer, vol. 34(2), pages 469-487, June.
    4. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    5. Fan, Jinlin & Zhang, Yaowu & Zhu, Liping, 2022. "Independence tests in the presence of measurement errors: An invariance law," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    6. Jiang, Qing & Hušková, Marie & Meintanis, Simos G. & Zhu, Lixing, 2019. "Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 202-220.
    7. Hongjian Shi & Marc Hallin & Mathias Drton & Fang Han, 2020. "Rate-Optimality of Consistent Distribution-Free Tests of Independence Based on Center-Outward Ranks and Signs," Working Papers ECARES 2020-23, ULB -- Universite Libre de Bruxelles.
    8. Boudreault, Jeremie & Bergeron, Normand E & St-Hilaire, Andre & Chebana, Fateh, 2022. "A new look at habitat suitability curves through functional data analysis," Ecological Modelling, Elsevier, vol. 467(C).
    9. Qiu, Zhiping & Fan, Jiangyuan & Zhang, Jin-Ting & Chen, Jianwei, 2024. "Tests for equality of several covariance matrix functions for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    10. J. A. Cuesta-Albertos & M. Febrero-Bande & M. Oviedo de la Fuente, 2017. "The $$\hbox {DD}^G$$ DD G -classifier in the functional setting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 119-142, March.
    11. Zhou, Yeqing & Liu, Jingyuan & Zhu, Liping, 2020. "Test for conditional independence with application to conditional screening," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    12. Cristina Anton & Iain Smith, 2024. "Model-based clustering of functional data via mixtures of t distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 563-595, September.
    13. Holger Dette & Kevin Kokot, 2022. "Detecting relevant differences in the covariance operators of functional time series: a sup-norm approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 195-231, April.
    14. Cencheng Shen & Joshua T. Vogelstein, 2021. "The exact equivalence of distance and kernel methods in hypothesis testing," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 385-403, September.
    15. Deqing Wang & Zhangqi Zhong & Kaixu Bai & Lingyun He, 2019. "Spatial and Temporal Variabilities of PM 2.5 Concentrations in China Using Functional Data Analysis," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    16. Liu, Jicai & Si, Yuefeng & Niu, Yong & Zhang, Riquan, 2022. "Projection quantile correlation and its use in high-dimensional grouped variable screening," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    17. Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
    18. Manuel Oviedo-de la Fuente & Carlos Cabo & Celestino Ordóñez & Javier Roca-Pardiñas, 2021. "A Distance Correlation Approach for Optimum Multiscale Selection in 3D Point Cloud Classification," Mathematics, MDPI, vol. 9(12), pages 1-19, June.
    19. Jing Zhang & Qihua Wang & Xuan Wang, 2022. "Surrogate-variable-based model-free feature screening for survival data under the general censoring mechanism," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 379-397, April.
    20. Febrero-Bande, Manuel & González-Manteiga, Wenceslao & Prallon, Brenda & Saporito, Yuri F., 2023. "Functional classification of bitcoin addresses," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:18:y:2024:i:2:d:10.1007_s11634-023-00538-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.