IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i8d10.1007_s00362-024-01567-9.html
   My bibliography  Save this article

On the functional regression model and its finite-dimensional approximations

Author

Listed:
  • José R. Berrendero

    (Universidad Autónoma de Madrid and Instituto de Ciencias Matemáticas ICMAT (CSIC-UAM-UCM-UC3M))

  • Alejandro Cholaquidis

    (Universidad de la República)

  • Antonio Cuevas

    (Universidad Autónoma de Madrid and Instituto de Ciencias Matemáticas ICMAT (CSIC-UAM-UCM-UC3M))

Abstract

The problem of linearly predicting a scalar response Y from a functional (random) explanatory variable $$X=X(t),\ t\in I$$ X = X ( t ) , t ∈ I is considered. It is argued that the term “linearly” can be interpreted in several meaningful ways. Thus, one could interpret that (up to a random noise) Y could be expressed as a linear combination of a finite family of marginals $$X(t_i)$$ X ( t i ) of the process X, or a limit of a sequence of such linear combinations. This simple point of view (which has some precedents in the literature) leads to a formulation of the linear model in terms of the RKHS space generated by the covariance function of the process X(t). It turns out that such RKHS-based formulation includes the standard functional linear model, based on the inner product in the space $$L^2[0,1]$$ L 2 [ 0 , 1 ] , as a particular case. It includes as well all models in which Y is assumed to be (up to an additive noise) a linear combination of a finite number of linear projections of X. Some consistency results are proved which, in particular, lead to an asymptotic approximation of the predictions derived from the general (functional) linear model in terms of finite-dimensional models based on a finite family of marginals $$X(t_i)$$ X ( t i ) , for an increasing grid of points $$t_j$$ t j in I. We also include a discussion on the crucial notion of coefficient of determination (aimed at assessing the fit of the model) in this setting. A few experimental results are given.

Suggested Citation

  • José R. Berrendero & Alejandro Cholaquidis & Antonio Cuevas, 2024. "On the functional regression model and its finite-dimensional approximations," Statistical Papers, Springer, vol. 65(8), pages 5167-5201, October.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:8:d:10.1007_s00362-024-01567-9
    DOI: 10.1007/s00362-024-01567-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01567-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01567-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lindquist, Martin A. & McKeague, Ian W., 2009. "Logistic Regression With Brownian-Like Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1575-1585.
    2. Febrero-Bande, Manuel & de la Fuente, Manuel Oviedo, 2012. "Statistical Computing in Functional Data Analysis: The R Package fda.usc," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i04).
    3. Shin, Hyejin & Hsing, Tailen, 2012. "Linear prediction in functional data analysis," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3680-3700.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José R. Berrendero & Beatriz Bueno-Larraz & Antonio Cuevas, 2023. "On functional logistic regression: some conceptual issues," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 321-349, March.
    2. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    3. Goldsmith, Jeff & Scheipl, Fabian, 2014. "Estimator selection and combination in scalar-on-function regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 362-372.
    4. Kosiorowski Daniel & Mielczarek Dominik & Rydlewski Jerzy P. & Snarska Małgorzata, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Statistics Poland, vol. 19(2), pages 331-350, June.
    5. François Freddy Ateba & Manuel Febrero-Bande & Issaka Sagara & Nafomon Sogoba & Mahamoudou Touré & Daouda Sanogo & Ayouba Diarra & Andoh Magdalene Ngitah & Peter J. Winch & Jeffrey G. Shaffer & Donald, 2020. "Predicting Malaria Transmission Dynamics in Dangassa, Mali: A Novel Approach Using Functional Generalized Additive Models," IJERPH, MDPI, vol. 17(17), pages 1-16, August.
    6. Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
    7. Daniel Kosiorowski & Jerzy P. Rydlewski & Małgorzata Snarska, 2019. "Detecting a structural change in functional time series using local Wilcoxon statistic," Statistical Papers, Springer, vol. 60(5), pages 1677-1698, October.
    8. Manuel Febrero-Bande & Wenceslao González-Manteiga & Manuel Oviedo de la Fuente, 2019. "Variable selection in functional additive regression models," Computational Statistics, Springer, vol. 34(2), pages 469-487, June.
    9. Sokhna Dieng & Pierre Michel & Abdoulaye Guindo & Kankoe Sallah & El-Hadj Ba & Badara Cissé & Maria Patrizia Carrieri & Cheikh Sokhna & Paul Milligan & Jean Gaudart, 2020. "Application of Functional Data Analysis to Identify Patterns of Malaria Incidence, to Guide Targeted Control Strategies," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    10. Fabrizio Maturo & Rosanna Verde, 2023. "Supervised classification of curves via a combined use of functional data analysis and tree-based methods," Computational Statistics, Springer, vol. 38(1), pages 419-459, March.
    11. Wang, Xianlong & Qu, Annie, 2014. "Efficient classification for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 119-134.
    12. Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    13. Ruzong Fan & Hong-Bin Fang, 2022. "Stochastic functional linear models and Malliavin calculus," Computational Statistics, Springer, vol. 37(2), pages 591-611, April.
    14. Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski & Małgorzata Snarska, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 331-350, June.
    15. Jiang, Qing & Hušková, Marie & Meintanis, Simos G. & Zhu, Lixing, 2019. "Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 202-220.
    16. Blanquero, R. & Carrizosa, E. & Jiménez-Cordero, A. & Martín-Barragán, B., 2019. "Functional-bandwidth kernel for Support Vector Machine with Functional Data: An alternating optimization algorithm," European Journal of Operational Research, Elsevier, vol. 275(1), pages 195-207.
    17. Eduardo García‐Portugués & Javier Álvarez‐Liébana & Gonzalo Álvarez‐Pérez & Wenceslao González‐Manteiga, 2021. "A goodness‐of‐fit test for the functional linear model with functional response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 502-528, June.
    18. Fabrizio Maturo & Antonio Balzanella & Tonio Di Battista, 2019. "Building Statistical Indicators of Equitable and Sustainable Well-Being in a Functional Framework," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(3), pages 449-471, December.
    19. Francesca Fortuna & Fabrizio Maturo, 2019. "K-means clustering of item characteristic curves and item information curves via functional principal component analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2291-2304, September.
    20. Antonio Elías & Raúl Jiménez & Han Lin Shang, 2023. "Depth-based reconstruction method for incomplete functional data," Computational Statistics, Springer, vol. 38(3), pages 1507-1535, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:8:d:10.1007_s00362-024-01567-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.