IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v45y2020i6p719-749.html
   My bibliography  Save this article

Identifying and Classifying Aberrant Response Patterns Through Functional Data Analysis

Author

Listed:
  • Eduardo Doval

    (16719Universitat Autònoma de Barcelona)

  • Pedro Delicado

    (16767Universitat Politècnica de Catalunya)

Abstract

We propose new methods for identifying and classifying aberrant response patterns (ARPs) by means of functional data analysis. These methods take the person response function (PRF) of an individual and compare it with the pattern that would correspond to a generic individual of the same ability according to the item-person response surface. ARPs correspond to atypical difference functions. The ARP classification is done with functional data clustering applied to the PRFs identified as ARP. We apply these methods to two sets of simulated data (the first is used to illustrate the ARP identification methods and the second demonstrates classification of the response patterns flagged as ARP) and a real data set (a Grade 12 science assessment test, SAT, with 32 items answered by 600 examinees). For comparative purposes, ARPs are also identified with three nonparametric person-fit indices (Ht, Modified Caution Index, and ZU3). Our results indicate that the ARP detection ability of one of our proposed methods is comparable to that of person-fit indices. Moreover, the proposed classification methods enable ARP associated with either spuriously low or spuriously high scores to be distinguished.

Suggested Citation

  • Eduardo Doval & Pedro Delicado, 2020. "Identifying and Classifying Aberrant Response Patterns Through Functional Data Analysis," Journal of Educational and Behavioral Statistics, , vol. 45(6), pages 719-749, December.
  • Handle: RePEc:sae:jedbes:v:45:y:2020:i:6:p:719-749
    DOI: 10.3102/1076998620911941
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998620911941
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998620911941?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Klaas Sijtsma & Rob Meijer, 2001. "The person response function as a tool in person-fit research," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 191-207, June.
    2. Febrero-Bande, Manuel & de la Fuente, Manuel Oviedo, 2012. "Statistical Computing in Functional Data Analysis: The R Package fda.usc," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i04).
    3. Chalmers, R. Philip, 2012. "mirt: A Multidimensional Item Response Theory Package for the R Environment," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i06).
    4. Tendeiro, Jorge N. & Meijer, Rob R. & Niessen, A. Susan M., 2016. "PerFit: An R Package for Person-Fit Analysis in IRT," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i05).
    5. Antonio Cuevas & Manuel Febrero & Ricardo Fraiman, 2007. "Robust estimation and classification for functional data via projection-based depth notions," Computational Statistics, Springer, vol. 22(3), pages 481-496, September.
    6. J. Ramsay, 1991. "Kernel smoothing approaches to nonparametric item characteristic curve estimation," Psychometrika, Springer;The Psychometric Society, vol. 56(4), pages 611-630, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
    2. Daniel Kosiorowski & Jerzy P. Rydlewski & Małgorzata Snarska, 2019. "Detecting a structural change in functional time series using local Wilcoxon statistic," Statistical Papers, Springer, vol. 60(5), pages 1677-1698, October.
    3. Fabrizio Maturo & Rosanna Verde, 2023. "Supervised classification of curves via a combined use of functional data analysis and tree-based methods," Computational Statistics, Springer, vol. 38(1), pages 419-459, March.
    4. Blanquero, R. & Carrizosa, E. & Jiménez-Cordero, A. & Martín-Barragán, B., 2019. "Functional-bandwidth kernel for Support Vector Machine with Functional Data: An alternating optimization algorithm," European Journal of Operational Research, Elsevier, vol. 275(1), pages 195-207.
    5. Francesca Fortuna & Fabrizio Maturo, 2019. "K-means clustering of item characteristic curves and item information curves via functional principal component analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2291-2304, September.
    6. Feliu Serra-Burriel & Pedro Delicado & Fernando M. Cucchietti, 2021. "Wildfires Vegetation Recovery through Satellite Remote Sensing and Functional Data Analysis," Mathematics, MDPI, vol. 9(11), pages 1-22, June.
    7. Cristina Anton & Iain Smith, 2024. "Model-based clustering of functional data via mixtures of t distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 563-595, September.
    8. Tendeiro, Jorge N. & Meijer, Rob R. & Niessen, A. Susan M., 2016. "PerFit: An R Package for Person-Fit Analysis in IRT," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i05).
    9. Maxwell Hong & Lizhen Lin & Ying Cheng, 2021. "Asymptotically Corrected Person Fit Statistics for Multidimensional Constructs with Simple Structure and Mixed Item Types," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 464-488, June.
    10. Febrero-Bande, Manuel & González-Manteiga, Wenceslao & Prallon, Brenda & Saporito, Yuri F., 2023. "Functional classification of bitcoin addresses," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    11. Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
    12. Chanjin Zheng & Shaoyang Guo & Justin L Kern, 2021. "Fast Bayesian Estimation for the Four-Parameter Logistic Model (4PLM)," SAGE Open, , vol. 11(4), pages 21582440211, October.
    13. J. A. Cuesta-Albertos & M. Febrero-Bande & M. Oviedo de la Fuente, 2017. "The $$\hbox {DD}^G$$ DD G -classifier in the functional setting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 119-142, March.
    14. Daniel Hlubinka & Irène Gijbels & Marek Omelka & Stanislav Nagy, 2015. "Integrated data depth for smooth functions and its application in supervised classification," Computational Statistics, Springer, vol. 30(4), pages 1011-1031, December.
    15. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    16. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    17. Mojirsheibani, Majid & Shaw, Crystal, 2018. "Classification with incomplete functional covariates," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 40-46.
    18. Luo, Nanyu & Ji, Feng & Han, Yuting & He, Jinbo & Zhang, Xiaoya, 2024. "Fitting item response theory models using deep learning computational frameworks," OSF Preprints tjxab, Center for Open Science.
    19. Li, Pai-Ling & Chiou, Jeng-Min & Shyr, Yu, 2017. "Functional data classification using covariate-adjusted subspace projection," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 21-34.
    20. Henry Santa-Cruz-Espinoza & Gina Chávez-Ventura & Julio Domínguez-Vergara & César Merino-Soto, 2023. "Internal Structure of the Work–Family Conflict Questionnaire (WFCQ) in Teacher Teleworking," IJERPH, MDPI, vol. 20(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:45:y:2020:i:6:p:719-749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.