IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02866666.html
   My bibliography  Save this paper

Application of Functional Data Analysis to Identify Patterns of Malaria Incidence, to Guide Targeted Control Strategies

Author

Listed:
  • Sokhna Dieng

    (SESSTIM - U1252 INSERM - Aix Marseille Univ - UMR 259 IRD - Sciences Economiques et Sociales de la Santé & Traitement de l'Information Médicale - IRD - Institut de Recherche pour le Développement - AMU - Aix Marseille Université - INSERM - Institut National de la Santé et de la Recherche Médicale)

  • Pierre Michel

    (AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

  • Abdoulaye Guindo

    (SESSTIM - U1252 INSERM - Aix Marseille Univ - UMR 259 IRD - Sciences Economiques et Sociales de la Santé & Traitement de l'Information Médicale - IRD - Institut de Recherche pour le Développement - AMU - Aix Marseille Université - INSERM - Institut National de la Santé et de la Recherche Médicale, MERIT - UMR_D 261 - Mère et enfant en milieu tropical : pathogènes, système de santé et transition épidémiologique - IRD - Institut de Recherche pour le Développement - UPCité - Université Paris Cité)

  • Kankoé L Sallah

    (SESSTIM - U1252 INSERM - Aix Marseille Univ - UMR 259 IRD - Sciences Economiques et Sociales de la Santé & Traitement de l'Information Médicale - IRD - Institut de Recherche pour le Développement - AMU - Aix Marseille Université - INSERM - Institut National de la Santé et de la Recherche Médicale, HUPNVS - Groupe Hospitalier des Hôpitaux Universitaires Paris Nord Val de Seine [Paris])

  • El-Hadj Ba

    (VITROME - Vecteurs - Infections tropicales et méditerranéennes - IRD - Institut de Recherche pour le Développement - AMU - Aix Marseille Université - IRBA - Institut de Recherche Biomédicale des Armées [Brétigny-sur-Orge])

  • Badara Cisse

    (IRESSEF - Institut de Recherche en Santé, de Surveillance Épidémiologique et de Formation)

  • Maria Patrizia Carrieri

    (SESSTIM - U1252 INSERM - Aix Marseille Univ - UMR 259 IRD - Sciences Economiques et Sociales de la Santé & Traitement de l'Information Médicale - IRD - Institut de Recherche pour le Développement - AMU - Aix Marseille Université - INSERM - Institut National de la Santé et de la Recherche Médicale)

  • Cheikh Sokhna

    (VITROME - Vecteurs - Infections tropicales et méditerranéennes - IRD - Institut de Recherche pour le Développement - AMU - Aix Marseille Université - IRBA - Institut de Recherche Biomédicale des Armées [Brétigny-sur-Orge])

  • Paul Milligan

    (LSHTM - London School of Hygiene and Tropical Medicine)

  • Jean Gaudart

    (SESSTIM - U1252 INSERM - Aix Marseille Univ - UMR 259 IRD - Sciences Economiques et Sociales de la Santé & Traitement de l'Information Médicale - IRD - Institut de Recherche pour le Développement - AMU - Aix Marseille Université - INSERM - Institut National de la Santé et de la Recherche Médicale)

Abstract

We introduce an approach based on functional data analysis to identify patterns of malaria incidence to guide effective targeting of malaria control in a seasonal transmission area. Using functional data method, a smooth function (functional data or curve) was fitted from the time series of observed malaria incidence for each of 575 villages in west-central Senegal from 2008 to 2012. These 575 smooth functions were classified using hierarchical clustering (Ward’s method), and several different dissimilarity measures. Validity indices were used to determine the number of distinct temporal patterns of malaria incidence. Epidemiological indicators characterizing the resulting malaria incidence patterns were determined from the velocity and acceleration of their incidences over time. We identified three distinct patterns of malaria incidence: high-, intermediate-, and low-incidence patterns in respectively 2% (12/575), 17% (97/575), and 81% (466/575) of villages. Epidemiological indicators characterizing the fluctuations in malaria incidence showed that seasonal outbreaks started later, and ended earlier, in the low-incidence pattern. Functional data analysis can be used to identify patterns of malaria incidence, by considering their temporal dynamics. Epidemiological indicators derived from their velocities and accelerations, may guide to target control measures according to patterns.

Suggested Citation

  • Sokhna Dieng & Pierre Michel & Abdoulaye Guindo & Kankoé L Sallah & El-Hadj Ba & Badara Cisse & Maria Patrizia Carrieri & Cheikh Sokhna & Paul Milligan & Jean Gaudart, 2020. "Application of Functional Data Analysis to Identify Patterns of Malaria Incidence, to Guide Targeted Control Strategies," Post-Print hal-02866666, HAL.
  • Handle: RePEc:hal:journl:hal-02866666
    DOI: 10.3390/ijerph17114168
    Note: View the original document on HAL open archive server: https://amu.hal.science/hal-02866666
    as

    Download full text from publisher

    File URL: https://amu.hal.science/hal-02866666/document
    Download Restriction: no

    File URL: https://libkey.io/10.3390/ijerph17114168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Febrero-Bande, Manuel & de la Fuente, Manuel Oviedo, 2012. "Statistical Computing in Functional Data Analysis: The R Package fda.usc," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i04).
    2. Giorgino, Toni, 2009. "Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i07).
    3. Fionn Murtagh & Pierre Legendre, 2014. "Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 274-295, October.
    4. Montero, Pablo & Vilar, José A., 2014. "TSclust: An R Package for Time Series Clustering," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i01).
    5. Gaudart, Jean & Graffeo, Nathalie & Coulibaly, Drissa & Barbet, Guillaume & Rebaudet, Stanilas & Dessay, Nadine & Doumbo, Ogobara K. & Giorgi, Roch, 2015. "SPODT: An R Package to Perform Spatial Partitioning," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i16).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiwei Wang & Futian Weng & Jianping Zhu & Qiyuan Li & Xiaolong Wu, 2023. "An Analytical Approach for Temporal Infection Mapping and Composite Index Development," Mathematics, MDPI, vol. 11(20), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanjo Odendaal & Monique Reid & Johann F. Kirsten, 2020. "Media‐Based Sentiment Indices as an Alternative Measure of Consumer Confidence," South African Journal of Economics, Economic Society of South Africa, vol. 88(4), pages 409-434, December.
    2. Chong Guan & Wenting Liu & Jack Yu-Chao Cheng, 2022. "Using Social Media to Predict the Stock Market Crash and Rebound amid the Pandemic: The Digital ‘Haves’ and ‘Have-mores’," Annals of Data Science, Springer, vol. 9(1), pages 5-31, February.
    3. Szczepocki Piotr, 2019. "Clustering Companies Listed on the Warsaw Stock Exchange According to Time-Varying Beta," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(2), pages 63-79, June.
    4. Mantas Svazas & Valentinas Navickas & Yuriy Bilan & Joanna Nakonieczny & Jana Spankova, 2021. "Biomass Clusterization from a Regional Perspective: The Case of Lithuania," Energies, MDPI, vol. 14(21), pages 1-15, October.
    5. Roberto Benedetti & Federica Piersimoni & Giacomo Pignataro & Francesco Vidoli, 2020. "Identification of spatially constrained homogeneous clusters of COVID‐19 transmission in Italy," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1169-1187, December.
    6. Lucio Palazzo & Riccardo Ievoli, 2023. "Detecting Regional Differences in Italian Health Services during Five COVID-19 Waves," Stats, MDPI, vol. 6(2), pages 1-13, April.
    7. Sipan Aslan & Ceylan Yozgatligil & Cem Iyigun, 2018. "Temporal clustering of time series via threshold autoregressive models: application to commodity prices," Annals of Operations Research, Springer, vol. 260(1), pages 51-77, January.
    8. Amato, Umberto & Antoniadis, Anestis & De Feis, Italia & Goude, Yannig & Lagache, Audrey, 2021. "Forecasting high resolution electricity demand data with additive models including smooth and jagged components," International Journal of Forecasting, Elsevier, vol. 37(1), pages 171-185.
    9. Mastroeni, Loretta & Mazzoccoli, Alessandro & Quaresima, Greta & Vellucci, Pierluigi, 2021. "Decoupling and recoupling in the crude oil price benchmarks: An investigation of similarity patterns," Energy Economics, Elsevier, vol. 94(C).
    10. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    11. Giger, Markus & Mutea, Emily & Kiteme, Boniface & Eckert, Sandra & Anseeuw, Ward & Zaehringer, Julie G., 2020. "Large agricultural investments in Kenya’s Nanyuki Area: Inventory and analysis of business models," Land Use Policy, Elsevier, vol. 99(C).
    12. Christoph J. Borner & Ingo Hoffmann & Jonas Krettek & Lars M. Kurzinger & Tim Schmitz, 2021. "Bitcoin: Like a Satellite or Always Hardcore? A Core-Satellite Identification in the Cryptocurrency Market," Papers 2105.12336, arXiv.org.
    13. Walker, Nathan L. & Styles, David & Coughlan, Paul & Williams, A. Prysor, 2022. "Cross-sector sustainability benchmarking of major utilities in the United Kingdom," Utilities Policy, Elsevier, vol. 78(C).
    14. Beibei Zhang & Rong Chen, 2018. "Nonlinear Time Series Clustering Based on Kolmogorov-Smirnov 2D Statistic," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 394-421, October.
    15. Abang Zainoren Abang Abdurahman & Syerina Azlin Md Nasir & Wan Fairos Wan Yaacob & Serah Jaya & Suhaili Mokhtar, 2021. "Spatio-Temporal Clustering of Sarawak Malaysia Total Protected Area Visitors," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    16. Kosiorowski Daniel & Mielczarek Dominik & Rydlewski Jerzy P. & Snarska Małgorzata, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 331-350, June.
    17. Yangchen Di & Mingyue Lu & Min Chen & Zhangjian Chen & Zaiyang Ma & Manzhu Yu, 2022. "A quantitative method for the similarity assessment of typhoon tracks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 587-602, May.
    18. François Freddy Ateba & Manuel Febrero-Bande & Issaka Sagara & Nafomon Sogoba & Mahamoudou Touré & Daouda Sanogo & Ayouba Diarra & Andoh Magdalene Ngitah & Peter J. Winch & Jeffrey G. Shaffer & Donald, 2020. "Predicting Malaria Transmission Dynamics in Dangassa, Mali: A Novel Approach Using Functional Generalized Additive Models," IJERPH, MDPI, vol. 17(17), pages 1-16, August.
    19. Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
    20. Mulu Abraha Woldegiorgis & Janet E. Hiller & Wubegzier Mekonnen & Jahar Bhowmik, 2018. "Disparities in maternal health services in sub-Saharan Africa," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 63(4), pages 525-535, May.

    More about this item

    Keywords

    functional data analysis; time series clustering; malaria patterns; malaria dynamic;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02866666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.