IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v61y2020i6d10.1007_s00362-018-01066-8.html
   My bibliography  Save this article

FPCA-based estimation for generalized functional partially linear models

Author

Listed:
  • Ruiyuan Cao

    (Beijing University of Technology)

  • Jiang Du

    (Beijing University of Technology)

  • Jianjun Zhou

    (Yunnan University)

  • Tianfa Xie

    (Beijing University of Technology)

Abstract

In real data analysis, practitioners frequently come across the case that a discrete response will be related to both a function-valued random variable and a vector-value random variable as the predictor variables. In this paper, we consider the generalized functional partially linear models (GFPLM). The infinite slope function in the GFPLM is estimated by the principal component basis function approximations. Then, we consider the theoretical properties of the estimator obtained by maximizing the quasi likelihood function. The asymptotic normality of the estimator of the finite dimensional parameter and the rate of convergence of the estimator of the infinite dimensional slope function are established, respectively. We investigate the finite sample properties of the estimation procedure via Monte Carlo simulation studies and a real data analysis.

Suggested Citation

  • Ruiyuan Cao & Jiang Du & Jianjun Zhou & Tianfa Xie, 2020. "FPCA-based estimation for generalized functional partially linear models," Statistical Papers, Springer, vol. 61(6), pages 2715-2735, December.
  • Handle: RePEc:spr:stpapr:v:61:y:2020:i:6:d:10.1007_s00362-018-01066-8
    DOI: 10.1007/s00362-018-01066-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-018-01066-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-018-01066-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Febrero-Bande, Manuel & de la Fuente, Manuel Oviedo, 2012. "Statistical Computing in Functional Data Analysis: The R Package fda.usc," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i04).
    2. Ping Yu & Zhongzhan Zhang & Jiang Du, 2016. "A test of linearity in partial functional linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 953-969, November.
    3. Cardot, Hervé & Ferraty, Frédéric & Sarda, Pascal, 1999. "Functional linear model," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 11-22, October.
    4. Zhou, Jianjun & Chen, Min, 2012. "Spline estimators for semi-functional linear model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 505-513.
    5. Ying Lu & Jiang Du & Zhimeng Sun, 2014. "Functional partially linear quantile regression model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(2), pages 317-332, February.
    6. Germán Aneiros & Philippe Vieu, 2015. "Partial linear modelling with multi-functional covariates," Computational Statistics, Springer, vol. 30(3), pages 647-671, September.
    7. Cardot, Hervé & Sarda, Pacal, 2005. "Estimation in generalized linear models for functional data via penalized likelihood," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 24-41, January.
    8. Qing-Yan Peng & Jian-Jun Zhou & Nian-Sheng Tang, 2016. "Varying coefficient partially functional linear regression models," Statistical Papers, Springer, vol. 57(3), pages 827-841, September.
    9. Dehan Kong & Joseph G. Ibrahim & Eunjee Lee & Hongtu Zhu, 2018. "FLCRM: Functional linear cox regression model," Biometrics, The International Biometric Society, vol. 74(1), pages 109-117, March.
    10. Li, Yehua & Hsing, Tailen, 2007. "On rates of convergence in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1782-1804, October.
    11. Aneiros-Pérez, Germán & Vieu, Philippe, 2006. "Semi-functional partial linear regression," Statistics & Probability Letters, Elsevier, vol. 76(11), pages 1102-1110, June.
    12. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Alahiane & Idir Ouassou & Mustapha Rachdi & Philippe Vieu, 2022. "High-Dimensional Statistics: Non-Parametric Generalized Functional Partially Linear Single-Index Model," Mathematics, MDPI, vol. 10(15), pages 1-21, July.
    2. Mustapha Rachdi & Mohamed Alahiane & Idir Ouassou & Abdelaziz Alahiane & Lahoucine Hobbad, 2024. "Cross-Validated Functional Generalized Partially Linear Single-Functional Index Model," Mathematics, MDPI, vol. 12(17), pages 1-22, August.
    3. Mohamed Alahiane & Idir Ouassou & Mustapha Rachdi & Philippe Vieu, 2021. "Partially Linear Generalized Single Index Models for Functional Data (PLGSIMF)," Stats, MDPI, vol. 4(4), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping Yu & Zhongyi Zhu & Zhongzhan Zhang, 2019. "Robust exponential squared loss-based estimation in semi-functional linear regression models," Computational Statistics, Springer, vol. 34(2), pages 503-525, June.
    2. Liebl, Dominik & Walders, Fabian, 2019. "Parameter regimes in partial functional panel regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 105-115.
    3. Zhu, Hanbing & Zhang, Riquan & Yu, Zhou & Lian, Heng & Liu, Yanghui, 2019. "Estimation and testing for partially functional linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 296-314.
    4. Ping Yu & Jiang Du & Zhongzhan Zhang, 2020. "Single-index partially functional linear regression model," Statistical Papers, Springer, vol. 61(3), pages 1107-1123, June.
    5. Jianjun Zhou & Zhao Chen & Qingyan Peng, 2016. "Polynomial spline estimation for partial functional linear regression models," Computational Statistics, Springer, vol. 31(3), pages 1107-1129, September.
    6. Yu, Ping & Song, Xinyuan & Du, Jiang, 2024. "Composite expectile estimation in partial functional linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
    7. Mustapha Rachdi & Mohamed Alahiane & Idir Ouassou & Abdelaziz Alahiane & Lahoucine Hobbad, 2024. "Cross-Validated Functional Generalized Partially Linear Single-Functional Index Model," Mathematics, MDPI, vol. 12(17), pages 1-22, August.
    8. Yu, Dengdeng & Zhang, Li & Mizera, Ivan & Jiang, Bei & Kong, Linglong, 2019. "Sparse wavelet estimation in quantile regression with multiple functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 12-29.
    9. Shuzhi Zhu & Peixin Zhao, 2019. "Tests for the linear hypothesis in semi-functional partial linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(2), pages 125-148, March.
    10. Mohamed Alahiane & Idir Ouassou & Mustapha Rachdi & Philippe Vieu, 2021. "Partially Linear Generalized Single Index Models for Functional Data (PLGSIMF)," Stats, MDPI, vol. 4(4), pages 1-21, September.
    11. Slaoui, Yousri, 2019. "Wild bootstrap bandwidth selection of recursive nonparametric relative regression for independent functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 494-511.
    12. Mohamed Alahiane & Idir Ouassou & Mustapha Rachdi & Philippe Vieu, 2022. "High-Dimensional Statistics: Non-Parametric Generalized Functional Partially Linear Single-Index Model," Mathematics, MDPI, vol. 10(15), pages 1-21, July.
    13. Ping Yu & Zhongzhan Zhang & Jiang Du, 2016. "A test of linearity in partial functional linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 953-969, November.
    14. Boente, Graciela & Salibian-Barrera, Matías & Vena, Pablo, 2020. "Robust estimation for semi-functional linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    15. Zhou, Jianjun & Chen, Min, 2012. "Spline estimators for semi-functional linear model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 505-513.
    16. Bin Yang & Min Chen & Tong Su & Jianjun Zhou, 2023. "Robust Estimation for Semi-Functional Linear Model with Autoregressive Errors," Mathematics, MDPI, vol. 11(2), pages 1-14, January.
    17. Usset, Joseph & Staicu, Ana-Maria & Maity, Arnab, 2016. "Interaction models for functional regression," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 317-329.
    18. Guodong Shan & Yiheng Hou & Baisen Liu, 2020. "Bayesian robust estimation of partially functional linear regression models using heavy-tailed distributions," Computational Statistics, Springer, vol. 35(4), pages 2077-2092, December.
    19. Ahmedou, Aziza & Marion, Jean-Marie & Pumo, Besnik, 2016. "Generalized linear model with functional predictors and their derivatives," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 313-324.
    20. F. Ferraty & A. Goia & E. Salinelli & P. Vieu, 2013. "Functional projection pursuit regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 293-320, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:61:y:2020:i:6:d:10.1007_s00362-018-01066-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.