IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v34y2019i2d10.1007_s00180-018-0808-9.html
   My bibliography  Save this article

Functional data clustering via hypothesis testing k-means

Author

Listed:
  • Adriano Zanin Zambom

    (California State University Northridge)

  • Julian A. A. Collazos

    (New Granada Military University)

  • Ronaldo Dias

    (State University of Campinas)

Abstract

Functional data clustering procedures seek to identify subsets of curves with similar shapes and estimate representative mean curves of each such subset. In this work, we propose a new approach for functional data clustering based on a combination of a hypothesis test of parallelism and the test for equality of means. These tests use all observations, which come from an underlying functional model, to compute a measure that determines to which smoothed cluster center each subject’s data belongs. This measure is incorporated into a modified k-means algorithm to partition subjects into clusters and find the cluster centers. While competing algorithms require a fixed amount of smoothing for all curves, the proposed test-based procedure performs unsupervised clustering to curves with different degrees of smoothing. Extensive numerical experiments were examined and the results on simulated and real datasets suggest that the proposed algorithm outperforms other clustering approaches in most cases.

Suggested Citation

  • Adriano Zanin Zambom & Julian A. A. Collazos & Ronaldo Dias, 2019. "Functional data clustering via hypothesis testing k-means," Computational Statistics, Springer, vol. 34(2), pages 527-549, June.
  • Handle: RePEc:spr:compst:v:34:y:2019:i:2:d:10.1007_s00180-018-0808-9
    DOI: 10.1007/s00180-018-0808-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-018-0808-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-018-0808-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Giacofci & S. Lambert-Lacroix & G. Marot & F. Picard, 2013. "Wavelet-Based Clustering for Mixed-Effects Functional Models in High Dimension," Biometrics, The International Biometric Society, vol. 69(1), pages 31-40, March.
    2. Jeng‐Min Chiou & Pai‐Ling Li, 2007. "Functional clustering and identifying substructures of longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 679-699, September.
    3. Bouveyron, Charles & Brunet-Saumard, Camille, 2014. "Model-based clustering of high-dimensional data: A review," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 52-78.
    4. Wang, Guochang & Lin, Nan & Zhang, Baoxue, 2014. "Functional k-means inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 172-182.
    5. Akritas M.G. & Papadatos N., 2004. "Heteroscedastic One-Way ANOVA and Lack-of-Fit Tests," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 368-382, January.
    6. Febrero-Bande, Manuel & de la Fuente, Manuel Oviedo, 2012. "Statistical Computing in Functional Data Analysis: The R Package fda.usc," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i04).
    7. Bongiorno, Enea G. & Goia, Aldo, 2016. "Classification methods for Hilbert data based on surrogate density," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 204-222.
    8. Francesca Ieva & Anna M. Paganoni & Davide Pigoli & Valeria Vitelli, 2013. "Multivariate functional clustering for the morphological analysis of electrocardiograph curves," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(3), pages 401-418, May.
    9. Nicoleta Serban & Huijing Jiang, 2012. "Multilevel Functional Clustering Analysis," Biometrics, The International Biometric Society, vol. 68(3), pages 805-814, September.
    10. Ricardo Fraiman & Badih Ghattas & Marcela Svarc, 2013. "Interpretable clustering using unsupervised binary trees," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(2), pages 125-145, June.
    11. Shuichi Tokushige & Hiroshi Yadohisa & Koichi Inada, 2007. "Crisp and fuzzy k-means clustering algorithms for multivariate functional data," Computational Statistics, Springer, vol. 22(1), pages 1-16, April.
    12. Jacques, Julien & Preda, Cristian, 2014. "Model-based clustering for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 92-106.
    13. Abel Rodríguez & David B. Dunson & Alan E. Gelfand, 2009. "Bayesian nonparametric functional data analysis through density estimation," Biometrika, Biometrika Trust, vol. 96(1), pages 149-162.
    14. C. Abraham & P. A. Cornillon & E. Matzner‐Løber & N. Molinari, 2003. "Unsupervised Curve Clustering using B‐Splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(3), pages 581-595, September.
    15. Bruno Scarpa & David B. Dunson, 2009. "Bayesian Hierarchical Functional Data Analysis Via Contaminated Informative Priors," Biometrics, The International Biometric Society, vol. 65(3), pages 772-780, September.
    16. Charles Bouveyron & Julien Jacques, 2011. "Model-based clustering of time series in group-specific functional subspaces," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 281-300, December.
    17. Michael Best & Robert Grauer & Jaroslava Hlouskova & Xili Zhang, 2014. "Loss-Aversion with Kinked Linear Utility Functions," Computational Economics, Springer;Society for Computational Economics, vol. 44(1), pages 45-65, June.
    18. Kyle Hasenstab & Aaron Scheffler & Donatello Telesca & Catherine A. Sugar & Shafali Jeste & Charlotte DiStefano & Damla Şentürk, 2017. "A multi-dimensional functional principal components analysis of EEG data," Biometrics, The International Biometric Society, vol. 73(3), pages 999-1009, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Germán Aneiros & Ricardo Cao & Philippe Vieu, 2019. "Editorial on the special issue on Functional Data Analysis and Related Topics," Computational Statistics, Springer, vol. 34(2), pages 447-450, June.
    2. Amandine Schmutz & Julien Jacques & Charles Bouveyron & Laurence Chèze & Pauline Martin, 2020. "Clustering multivariate functional data in group-specific functional subspaces," Computational Statistics, Springer, vol. 35(3), pages 1101-1131, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    2. Ana Justel & Marcela Svarc, 2018. "A divisive clustering method for functional data with special consideration of outliers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 637-656, September.
    3. Amandine Schmutz & Julien Jacques & Charles Bouveyron & Laurence Chèze & Pauline Martin, 2020. "Clustering multivariate functional data in group-specific functional subspaces," Computational Statistics, Springer, vol. 35(3), pages 1101-1131, September.
    4. Kim, Joonpyo & Oh, Hee-Seok, 2020. "Pseudo-quantile functional data clustering," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    5. Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.
    6. Li, Zehang & Elías, Antonio & Morales, Juan M., 2024. "Clustering and forecasting of day-ahead electricity supply curves using a market-based distance," DES - Working Papers. Statistics and Econometrics. WS 43805, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Tin Lok James Ng & Thomas Brendan Murphy, 2021. "Model-based Clustering of Count Processes," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 188-211, July.
    8. Qingzhi Zhong & Huazhen Lin & Yi Li, 2021. "Cluster non‐Gaussian functional data," Biometrics, The International Biometric Society, vol. 77(3), pages 852-865, September.
    9. Jacques, Julien & Preda, Cristian, 2014. "Model-based clustering for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 92-106.
    10. Michael Vogt & Oliver Linton, 2015. "Classification of nonparametric regression functions in heterogeneous panels," CeMMAP working papers CWP06/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Michael Vogt & Oliver Linton, 2017. "Classification of non-parametric regression functions in longitudinal data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 5-27, January.
    12. Michael Vogt & Oliver Linton, 2015. "Classification of nonparametric regression functions in heterogeneous panels," CeMMAP working papers 06/15, Institute for Fiscal Studies.
    13. Fang, Kuangnan & Chen, Yuanxing & Ma, Shuangge & Zhang, Qingzhao, 2022. "Biclustering analysis of functionals via penalized fusion," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    14. Christoph Hellmayr & Alan E. Gelfand, 2021. "A Partition Dirichlet Process Model for Functional Data Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 30-65, May.
    15. Zhang, Yi-Chen & Sakhanenko, Lyudmila, 2019. "The naive Bayes classifier for functional data," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 137-146.
    16. Ja‐Yoon Jang & Hee‐Seok Oh & Yaeji Lim & Ying Kuen Cheung, 2021. "Ensemble clustering for step data via binning," Biometrics, The International Biometric Society, vol. 77(1), pages 293-304, March.
    17. Rhoden, Imke & Weller, Daniel & Voit, Ann-Katrin, 2021. "Spatio-temporal dynamics of European innovation: An exploratory approach via multivariate functional data cluster analysis," Ruhr Economic Papers 926, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    18. Maria Ruiz-Medina & Rosa Espejo & Elvira Romano, 2014. "Spatial functional normal mixed effect approach for curve classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 257-285, September.
    19. Deqing Wang & Zhangqi Zhong & Kaixu Bai & Lingyun He, 2019. "Spatial and Temporal Variabilities of PM 2.5 Concentrations in China Using Functional Data Analysis," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    20. Amovin-Assagba, Martial & Gannaz, Irène & Jacques, Julien, 2022. "Outlier detection in multivariate functional data through a contaminated mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:34:y:2019:i:2:d:10.1007_s00180-018-0808-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.