My bibliography
Save this item
Forecasting multifractal volatility
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
- Sattarhoff, Cristina & Gronwald, Marc, 2022. "Measuring informational efficiency of the European carbon market — A quantitative evaluation of higher order dependence," International Review of Financial Analysis, Elsevier, vol. 84(C).
- Mawuli Segnon & Rangan Gupta & Keagile Lesame & Mark E. Wohar, 2021.
"High-Frequency Volatility Forecasting of US Housing Markets,"
The Journal of Real Estate Finance and Economics, Springer, vol. 62(2), pages 283-317, February.
- Mawuli Segnon & Rangan Gupta & Keagile Lesame & Mark E. Wohar, 2019. "High-Frequency Volatility Forecasting of US Housing Markets," Working Papers 201977, University of Pretoria, Department of Economics.
- Lux, Thomas, 2022. "Inference for Nonlinear State Space Models: A Comparison of Different Methods applied to Markov-Switching Multifractal Models," Econometrics and Statistics, Elsevier, vol. 21(C), pages 69-95.
- Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
- Calvet, Laurent E. & Fisher, Adlai J., 2007.
"Multifrequency news and stock returns,"
Journal of Financial Economics, Elsevier, vol. 86(1), pages 178-212, October.
- Laurent E. Calvet & Adlai J. Fisher, 2005. "Multifrequency News and Stock Returns," NBER Working Papers 11441, National Bureau of Economic Research, Inc.
- Laurent-Emmanuel Calvet & Adlai J. Fisher, 2007. "Multifrequency news and stock returns," Post-Print hal-00459675, HAL.
- Laurent-Emmanuel Calvet & Adlai J. Fisher, 2011. "Multifrequency News and Stock Returns," Working Papers hal-00591678, HAL.
- Harjoat S. Bhamra & Lars-Alexander Kuehn & Ilya A. Strebulaev, 2010.
"The Levered Equity Risk Premium and Credit Spreads: A Unified Framework,"
The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 645-703, February.
- Bhamra, Harjoat Singh & Kuehn, Lars-Alexander & Strebulaev, Ilya, 2018. "The Levered Equity Risk Premium and Credit Spreads: A Unified Framework," CEPR Discussion Papers 12827, C.E.P.R. Discussion Papers.
- Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2016. "Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data," Energy Economics, Elsevier, vol. 56(C), pages 117-133.
- Lux, Thomas & Kaizoji, Taisei, 2007.
"Forecasting volatility and volume in the Tokyo Stock Market: Long memory, fractality and regime switching,"
Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1808-1843, June.
- Lux, Thomas & Kaizoji, Taisei, 2006. "Forecasting volatility and volume in the Tokyo stock market: Long memory, fractality and regime switching," Economics Working Papers 2006-13, Christian-Albrechts-University of Kiel, Department of Economics.
- Rossi, Alessandro & Gallo, Giampiero M., 2006.
"Volatility estimation via hidden Markov models,"
Journal of Empirical Finance, Elsevier, vol. 13(2), pages 203-230, March.
- Alessandro Rossi & Giampiero M. Gallo, 2002. "Volatility Estimation via Hidden Markov Models," Econometrics Working Papers Archive wp2002_14, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Lux, Thomas & Morales-Arias, Leonardo, 2010. "Forecasting volatility under fractality, regime-switching, long memory and student-t innovations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2676-2692, November.
- Lux, Thomas & Morales-Arias, Leonardo, 2010. "Relative forecasting performance of volatility models: Monte Carlo evidence," Kiel Working Papers 1582, Kiel Institute for the World Economy (IfW Kiel).
- Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
- Mawuli Segnon & Mark Trede, 2018.
"Forecasting market risk of portfolios: copula-Markov switching multifractal approach,"
The European Journal of Finance, Taylor & Francis Journals, vol. 24(14), pages 1123-1143, September.
- Mawuli Segnon & Mark Trede, 2017. "Forecasting Market Risk of Portfolios: Copula-Markov Switching Multifractal Approach," CQE Working Papers 6617, Center for Quantitative Economics (CQE), University of Muenster.
- Friedrich Wagner, 2011. "Market clearing by maximum entropy in agent models of stock markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 6(2), pages 121-138, November.
- Donatien Hainaut & Yang Shen & Yan Zeng, 2018. "How do capital structure and economic regime affect fair prices of bank’s equity and liabilities?," Annals of Operations Research, Springer, vol. 262(2), pages 519-545, March.
- Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
- Lahmiri, Salim, 2017. "Multifractal analysis of Moroccan family business stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 183-191.
- Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
- Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
- Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
- Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.
- Fryzlewicz, Piotr & Nason, Guy P., 2006. "Haar-Fisz estimation of evolutionary wavelet spectra," LSE Research Online Documents on Economics 25227, London School of Economics and Political Science, LSE Library.
- Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2017. "Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 692-704.
- Chaboud, Alain P. & Chiquoine, Benjamin & Hjalmarsson, Erik & Loretan, Mico, 2010.
"Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets,"
Journal of Empirical Finance, Elsevier, vol. 17(2), pages 212-240, March.
- Alain P. Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Mico Loretan, 2007. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," International Finance Discussion Papers 905, Board of Governors of the Federal Reserve System (U.S.).
- Alain Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Mico Loretan, 2008. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," BIS Working Papers 249, Bank for International Settlements.
- Calvet, Laurent-Emmanuel & Czellar , Veronika, 2011.
"state-observation sampling and the econometrics of learning models,"
HEC Research Papers Series
947, HEC Paris.
- Laurent-Emmanuel Calvet & Veronika Czellar, 2011. "State-Observation Sampling and the Econometrics of Learning Models," Working Papers hal-00625500, HAL.
- Laurent E. Calvet & Veronika Czellar, 2011. "State-Observation Sampling and the Econometrics of Learning Models," Papers 1105.4519, arXiv.org.
- Hainaut, Donatien, 2014. "Impulse control of pension fund contributions, in a regime switching economy," European Journal of Operational Research, Elsevier, vol. 239(3), pages 810-819.
- Harjoat S. Bhamra & Lars-Alexander Kuehn & Ilya A. Strebulaev, 2010. "Long Run Risks, Credit Markets, and Financial Structure," American Economic Review, American Economic Association, vol. 100(2), pages 547-551, May.
- Batten, Jonathan A. & Kinateder, Harald & Wagner, Niklas, 2014. "Multifractality and value-at-risk forecasting of exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 71-81.
- Kukacka, Jiri & Kristoufek, Ladislav, 2021. "Does parameterization affect the complexity of agent-based models?," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 324-356.
- Oriol Pont & Antonio Turiel & Conrad J. Perez-Vicente, 2009. "Description, modeling and forecasting of data with optimal wavelets," Post-Print inria-00438526, HAL.
- D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
- Lux, Thomas & Kaizoji, Taisei, 2004. "Forecasting volatility and volume in the Tokyo stock market: The advantage of long memory models," Economics Working Papers 2004-05, Christian-Albrechts-University of Kiel, Department of Economics.
- Xiao, Di & Wang, Jun, 2021. "Attitude interaction for financial price behaviours by contact system with small-world network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
- Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
- Bjoern Schulte-Tillmann & Mawuli Segnon & Timo Wiedemann, 2023. "A comparison of high-frequency realized variance measures: Duration- vs. return-based approaches," CQE Working Papers 10523, Center for Quantitative Economics (CQE), University of Muenster.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003.
"Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility,"
PIER Working Paper Archive
03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
- Andersen, Torben G. & Bollerslev, Tim & Francis X. Diebold,, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," CFS Working Paper Series 2003/35, Center for Financial Studies (CFS).
- Calvet, Laurent E. & Fisher, Adlai J., 2008.
"Multifrequency jump-diffusions: An equilibrium approach,"
Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
- Laurent E. Calvet & Adlai J. Fisher, 2006. "Multifrequency Jump-Diffusions: An Equilibrium Approach," NBER Working Papers 12797, National Bureau of Economic Research, Inc.
- Laurent-Emmanuel Calvet & Adlai J. Fisher, 2008. "Multifrequency jump-diffusions: An equilibrium approach," Post-Print hal-00459681, HAL.
- Goddard, John & Onali, Enrico, 2016.
"Long memory and multifractality: A joint test,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 288-294.
- John Goddard & Enrico Onali, 2016. "Long memory and multifractality: A joint test," Papers 1601.00903, arXiv.org.
- Sattarhoff, Cristina & Lux, Thomas, 2021. "Forecasting the Variability of Stock Index Returns with the Multifractal Random Walk Model for Realized Volatilities," Economics Working Papers 2021-02, Christian-Albrechts-University of Kiel, Department of Economics.
- Xin-Lan Fu & Xing-Lu Gao & Zheng Shan & Zhi-Qiang Jiang & Wei-Xing Zhou, 2018. "Multifractal characteristics and return predictability in the Chinese stock markets," Papers 1806.07604, arXiv.org.
- Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
- Mawuli Segnon & Stelios Bekiros & Bernd Wilfling, 2018.
"Forecasting Inflation Uncertainty in the G7 Countries,"
Econometrics, MDPI, vol. 6(2), pages 1-25, April.
- Mawuli Segnon & Stelios Bekiros & Bernd Wilfling, 2018. "Forecasting Inflation Uncertainty in the G7 Countries," CQE Working Papers 7118, Center for Quantitative Economics (CQE), University of Muenster.
- Fernandes, Leonardo H.S. & de Araújo, Fernando H.A. & Silva, Igor E.M., 2020. "The (in)efficiency of NYMEX energy futures: A multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
- Thierry Bochud & Damien Challet, 2007. "Optimal approximations of power laws with exponentials: application to volatility models with long memory," Quantitative Finance, Taylor & Francis Journals, vol. 7(6), pages 585-589.
- Sattarhoff, Cristina & Lux, Thomas, 2023. "Forecasting the variability of stock index returns with the multifractal random walk model for realized volatilities," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1678-1697.
- Calvet, Laurent E. & Czellar, Veronika, 2015.
"Through the looking glass: Indirect inference via simple equilibria,"
Journal of Econometrics, Elsevier, vol. 185(2), pages 343-358.
- Calvet , Laurent & Czellar, Veronika, 2013. "Through the Looking Glass: Indirect Inference via Simple Equilibria," HEC Research Papers Series 1048, HEC Paris.
- Laurent E. Calvet & Veronika Czellar, 2014. "Through the Looking Glass: Indirect Inference via Simple Equilibria," Working Papers hal-02058272, HAL.
- Laurent E. Calvet & Veronika Czellar, 2015. "Through the Looking Glass : Indirect Inference via Simple Equilibria," Post-Print hal-02313236, HAL.
- Thomas Lux, 2003.
"The Multi-Fractal Model of Asset Returns:Its Estimation via GMM and Its Use for Volatility Forecasting,"
Computing in Economics and Finance 2003
14, Society for Computational Economics.
- Lux, Thomas, 2003. "The multi-fractal model of asset returns: Its estimation via GMM and its use for volatility forecasting," Economics Working Papers 2003-13, Christian-Albrechts-University of Kiel, Department of Economics.
- Marina Resta & Davide Sciutti, "undated". "A characterization of self-affine processes in finance through the scaling function," Modeling, Computing, and Mastering Complexity 2003 13, Society for Computational Economics.
- Mawuli Segnon & Stelios Bekiros, 2020. "Forecasting volatility in bitcoin market," Annals of Finance, Springer, vol. 16(3), pages 435-462, September.
- Akash P. POOJARI & Siva Kiran GUPTHA & G Raghavender RAJU, 2022. "Multifractal analysis of equities. Evidence from the emerging and frontier banking sectors," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(632), A), pages 61-80, Autumn.
- Krause, Sebastian M. & Bornholdt, Stefan, 2013. "Spin models as microfoundation of macroscopic market models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4048-4054.
- Proietti, Tommaso, 2014.
"Exponential Smoothing, Long Memory and Volatility Prediction,"
MPRA Paper
57230, University Library of Munich, Germany.
- Tommaso Proietti, 2015. "Exponential Smoothing, Long Memory and Volatility Prediction," CREATES Research Papers 2015-51, Department of Economics and Business Economics, Aarhus University.
- Tommaso Proietti, 2014. "Exponential Smoothing, Long Memory and Volatility Prediction," CEIS Research Paper 319, Tor Vergata University, CEIS, revised 30 Jul 2014.
- Mawuli Segnon & Thomas Lux & Rangan Gupta, 2015.
"Modeling and Forecasting Carbon Dioxide Emission Allowance Spot Price Volatility: Multifractal vs. GARCH-Type Volatility Models,"
Working Papers
201550, University of Pretoria, Department of Economics.
- Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2015. "Modeling and Forecasting Carbon Dioxide Emission Allowance Spot Price Volatility: Multifractal vs. GARCH-type Volatility Models," FinMaP-Working Papers 46, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Bandi, F.M. & Perron, B. & Tamoni, A. & Tebaldi, C., 2019.
"The scale of predictability,"
Journal of Econometrics, Elsevier, vol. 208(1), pages 120-140.
- Federico M. Bandi & Bernard Perron & Andrea Tamoni & Claudio Tebaldi, 2014. "The scale of predictability," Working Papers 509, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Bandi, F.M & Perron, B & Tamoni, Andrea & Tebaldi, C., 2018. "The scale of predictability," LSE Research Online Documents on Economics 85646, London School of Economics and Political Science, LSE Library.
- Federico M. Bandi & Benoit Perron & Andrea Tamoni & Claudio Tebaldi, 2015. "The scale of predictability," CIRANO Working Papers 2015s-21, CIRANO.
- Calvet, Laurent E. & Fisher, Adlai J. & Thompson, Samuel B., 2006.
"Volatility comovement: a multifrequency approach,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 179-215.
- Laurent E. Calvet & Adlai J. Fisher & Samuel B. Thompson, 2004. "Volatility Comovement: A Multifrequency Approach," NBER Technical Working Papers 0300, National Bureau of Economic Research, Inc.
- Laurent-Emmanuel Calvet & Adlai J. Fisher & Samuel B. Thompson, 2006. "Volatility Comovement: a multifrequency approach," Post-Print hal-00459667, HAL.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007.
"Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility,"
The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2005. "Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," NBER Working Papers 11775, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," CREATES Research Papers 2007-18, Department of Economics and Business Economics, Aarhus University.
- Oriol Pont & Antonio Turiel & Conrad Perez-Vicente, 2009. "Description, modelling and forecasting of data with optimal wavelets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 4(1), pages 39-54, June.
- Caraiani, Petre & Haven, Emmanuel, 2015. "Evidence of multifractality from CEE exchange rates against Euro," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 395-407.
- Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
- Eric M. Aldrich & Indra Heckenbach & Gregory Laughlin, 2014.
"The Random Walk of High Frequency Trading,"
Papers
1408.3650, arXiv.org, revised Aug 2014.
- Eric M. Aldrich & Indra Heckenbach & Gregory Laughlin, 2014. "A Compound Multifractal Model for High-Frequency Asset Returns," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-05, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
- Céline Azizieh & Wolfgang Breymann, 2005. "Estimation of the Stylized Facts of a Stochastic Cascade Model," Working Papers CEB 05-009.RS, ULB -- Universite Libre de Bruxelles.
- Tibor Szkaliczki & Anita Sobe & Wilfried Elmenreich, 2016. "Convergence and monotonicity of the hormone levels in a hormone-based content delivery system," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(4), pages 939-964, December.
- Wei, Yu & Chen, Wang & Lin, Yu, 2013. "Measuring daily Value-at-Risk of SSEC index: A new approach based on multifractal analysis and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2163-2174.
- Donatien Hainaut & Franck Moraux, 2019.
"A switching self-exciting jump diffusion process for stock prices,"
Annals of Finance, Springer, vol. 15(2), pages 267-306, June.
- Hainaut, Donatien & Moraux, Franck, 2018. "A switching self-exciting jump diffusion process for stock prices," LIDAM Discussion Papers ISBA 2018013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Hainaut, Donatien & Moraux, Franck, 2019. "A switching self-exciting jump diffusion process for stock prices," LIDAM Reprints ISBA 2019017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Donatien Hainaut & Franck Moraux, 2019. "A switching self-exciting jump diffusion process for stock prices," Post-Print halshs-01909772, HAL.
- Cheng, Fangzheng & Fan, Tijun & Fan, Dandan & Li, Shanling, 2018. "The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm," Energy Economics, Elsevier, vol. 72(C), pages 341-355.
- Rubina Zadourian, 2024. "Model-based and empirical analyses of stochastic fluctuations in economy and finance," Papers 2408.16010, arXiv.org.
- Tao, Qizhi & Wei, Yu & Liu, Jiapeng & Zhang, Ting, 2018. "Modeling and forecasting multifractal volatility established upon the heterogeneous market hypothesis," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 143-153.
- Liu, Ruipeng & Di Matteo, T. & Lux, Thomas, 2007.
"True and apparent scaling: The proximity of the Markov-switching multifractal model to long-range dependence,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 35-42.
- Ruipeng Liu & T. Di Matteo & Thomas Lux, 2007. "True and Apparent Scaling: The Proximity of the Markov-Switching Multifractal Model to Long-Range Dependence," Papers 0704.1338, arXiv.org.
- Liu, Ruipeng & Di Matteo, Tiziana & Lux, Thomas, 2007. "True and Apparent Scaling: The Proximity of the Markov- Switching Multifractal Model to Long-Range Dependence," Economics Working Papers 2007-06, Christian-Albrechts-University of Kiel, Department of Economics.
- Julien Idier, 2011.
"Long-term vs. short-term comovements in stock markets: the use of Markov-switching multifractal models,"
The European Journal of Finance, Taylor & Francis Journals, vol. 17(1), pages 27-48.
- Idier, J., 2008. "Long term vs. short term comovements in stock markets: the use of Markov-switching multifractal models," Working papers 218, Banque de France.
- R. Fernández-Pascual & M. Ruiz-Medina & J. Angulo, 2003. "Multiscale estimation of processes related to the fractional Black-Scholes equation," Computational Statistics, Springer, vol. 18(3), pages 401-415, September.
- Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
- Milan Fičura, 2017. "Forecasting Stock Market Realized Variance with Echo State Neural Networks," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2017(3), pages 145-155.
- Liu, Ruipeng & Lux, Thomas, 2010. "Flexible and robust modelling of volatility comovements: a comparison of two multifractal models," Kiel Working Papers 1594, Kiel Institute for the World Economy (IfW Kiel).
- Bekaert, Geert & Engstrom, Eric & Ermolov, Andrey, 2015. "Bad environments, good environments: A non-Gaussian asymmetric volatility model," Journal of Econometrics, Elsevier, vol. 186(1), pages 258-275.
- Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2015.
"Modeling and forecasting crude oil price volatility: Evidence from historical and recent data,"
FinMaP-Working Papers
31, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Thomas Lux & Mawuli K. Segnon & Rangan Gupta, 2015. "Modeling and Forecasting Crude Oil Price Volatility: Evidence from Historical and Recent Data," Working Papers 201511, University of Pretoria, Department of Economics.
- Laurent Calvet & Adlai Fisher, 2003.
"Regime-Switching and the Estimation of Multifractal Processes,"
Harvard Institute of Economic Research Working Papers
1999, Harvard - Institute of Economic Research.
- Laurent Calvet & Adlai Fisher, 2003. "Regime-Switching and the Estimation of Multifractal Processes," NBER Working Papers 9839, National Bureau of Economic Research, Inc.
- Charles, Amélie & Darné, Olivier, 2017.
"Forecasting crude-oil market volatility: Further evidence with jumps,"
Energy Economics, Elsevier, vol. 67(C), pages 508-519.
- Amélie Charles & Olivier Darné, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Post-Print hal-01598141, HAL.
- Yuan, Ying & Zhang, Tonghui, 2020. "Forecasting stock market in high and low volatility periods: a modified multifractal volatility approach," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Nasr, Adnen Ben & Lux, Thomas & Ajmi, Ahdi Noomen & Gupta, Rangan, 2016.
"Forecasting the volatility of the Dow Jones Islamic Stock Market Index: Long memory vs. regime switching,"
International Review of Economics & Finance, Elsevier, vol. 45(C), pages 559-571.
- Ben Nasr, Adnen & Lux, Thomas & Ajmi, Ahdi Noomen & Gupta, Rangan, 2014. "Forecasting the Volatility of the Dow Jones Islamic Stock Market Index: Long Memory vs. Regime Switching," FinMaP-Working Papers 2, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Nasr, Adnen Ben & Lux, Thomas & Ajm, Ahdi Noomen & Gupta, Rangan, 2014. "Forecasting the volatility of the dow jones islamic stock market index: Long memory vs. regime switching," Economics Working Papers 2014-07, Christian-Albrechts-University of Kiel, Department of Economics.
- Adnen Ben Nasr & Thomas Lux & Ahdi N. Ajmi & Rangan Gupta, 2014. "Forecasting the Volatility of the Dow Jones Islamic Stock Market Index: Long Memory vs. Regime Switching," Working Papers 201412, University of Pretoria, Department of Economics.
- Adnen Ben Nasr & Thomas Lux & Ahdi Noomen Ajmi & Rangan Gupta, 2014. "Forecasting the Volatility of the Dow Jones Islamic Stock Market Index: Long Memory vs. Regime Switching," Working Papers 2014-236, Department of Research, Ipag Business School.
- Aldrich, Eric M. & Heckenbach, Indra & Laughlin, Gregory, 2016. "A compound duration model for high-frequency asset returns," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 105-128.
- M. Rypdal & O. L{o}vsletten, 2011. "Multifractal modeling of short-term interest rates," Papers 1111.5265, arXiv.org.
- Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2013.
"A Markov-switching multifractal inter-trade duration model, with application to US equities,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 320-342.
- Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2012. "A Markov-Switching Multi-Fractal Inter-Trade Duration Model, with Application to U.S. Equities," Working Papers 12-09, University of Pennsylvania, Wharton School, Weiss Center.
- Fei Chen & Francis X. Diebold & Frank Schorfheide, 2012. "A Markov-Switching Multi-Fractal Inter-Trade Duration Model, with Application to U.S. Equities," NBER Working Papers 18078, National Bureau of Economic Research, Inc.
- Fei Chen & Francis X. Diebold & Frank Schorfheide, 2012. "A Markov-Switching Multi-Fractal Inter-Trade Duration Model, with Application to U.S. Equities," PIER Working Paper Archive 12-020, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Czellar, Veronika & Frazier, David T. & Renault, Eric, 2022. "Approximate maximum likelihood for complex structural models," Journal of Econometrics, Elsevier, vol. 231(2), pages 432-456.
- Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
- Lux, Thomas & Morales-Arias, Leonardo, 2009. "Forecasting volatility under fractality, regime-switching, long memory and student-t innovations," Kiel Working Papers 1532, Kiel Institute for the World Economy (IfW Kiel).
- Segnon Mawuli & Lau Chi Keung & Wilfling Bernd & Gupta Rangan, 2022.
"Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(1), pages 73-98, February.
- Mawuli Segnon & Chi Keung Lau & Bernd Wilfling & Rangan Gupta, 2017. "Are Multifractal Processes Suited to Forecasting Electricity Price Volatility? Evidence from Australian Intraday Data," Working Papers 201739, University of Pretoria, Department of Economics.
- Mawuli Segnon & Chi Keung Lau & Bernd Wilfling & Rangan Gupta, 2017. "Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data," CQE Working Papers 6117, Center for Quantitative Economics (CQE), University of Muenster.
- Krenar Avdulaj & Ladislav Kristoufek, 2020. "On Tail Dependence and Multifractality," Mathematics, MDPI, vol. 8(10), pages 1-13, October.
- Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW Kiel).
- Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW Kiel).
- Mawuli Segnon & Manuel Stapper, 2019. "Long Memory Conditional Heteroscedasticity in Count Data," CQE Working Papers 8219, Center for Quantitative Economics (CQE), University of Muenster.
- Salami, Monsurat Ayojimi & Tanrıvermiş, Harun & Tanrıvermiş, Yesim, 2024. "Influence of Ukraine invasion by Russia on Turkish markets," The Journal of Economic Asymmetries, Elsevier, vol. 29(C).
- DIAF, Sami, 2015. "Multifractal Random Walk Models: Application to the Algerian Dinar exchange rates," MPRA Paper 67619, University Library of Munich, Germany.
- Dai Pra, P. & Pigato, P., 2015. "Multi-scaling of moments in stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3725-3747.
- Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
- Donatien Hainaut & Yan Shen & Yan Zeng, 2016. "How do capital structure and economic regime affect fair prices of bank's equity and liabilities?," Post-Print hal-01394133, HAL.
- Eisler, Z. & Kertész, J., 2004. "Multifractal model of asset returns with leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 603-622.
- Lux, Thomas, 2013. "Exact solutions for the transient densities of continuous-time Markov switching models: With an application to the poisson multifractal model," Kiel Working Papers 1871, Kiel Institute for the World Economy (IfW Kiel).
- Thomas Lux & Leonardo Morales-Arias, 2013. "Relative forecasting performance of volatility models: Monte Carlo evidence," Quantitative Finance, Taylor & Francis Journals, vol. 13(9), pages 1375-1394, September.
- Rypdal, Martin & Løvsletten, Ola, 2013. "Modeling electricity spot prices using mean-reverting multifractal processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 194-207.
- Calvet, Laurent E. & Fearnley, Marcus & Fisher, Adlai J. & Leippold, Markus, 2015.
"What is beneath the surface? Option pricing with multifrequency latent states,"
Journal of Econometrics, Elsevier, vol. 187(2), pages 498-511.
- Calvet , Laurent E. & Fearnley, Marcus & Adlai J. , Fisher & Markus, Leippold, 2013. "What's Beneath the Surface? Option Pricing with Multifrequency Latent States," HEC Research Papers Series 969, HEC Paris.
- Lux, Thomas, 2018. "Inference for nonlinear state space models: A comparison of different methods applied to Markov-switching multifractal models," Economics Working Papers 2018-07, Christian-Albrechts-University of Kiel, Department of Economics.
- Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.
- Manabu Asai & Michael McAleer & Jun Yu, 2006.
"Multivariate Stochastic Volatility,"
Microeconomics Working Papers
22058, East Asian Bureau of Economic Research.
- Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
- Massimo Guidolin, 2013. "Markov switching models in asset pricing research," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 1, pages 3-44, Edward Elgar Publishing.
- L. Borland & J. -Ph. Bouchaud, 2005. "On a multi-timescale statistical feedback model for volatility fluctuations," Papers physics/0507073, arXiv.org.
- Liu, Ruipeng & Lux, Thomas, 2017. "Generalized Method of Moment estimation of multivariate multifractal models," Economic Modelling, Elsevier, vol. 67(C), pages 136-148.
- Benoit Pochard & Jean-Philippe Bouchaud, 2003. "Option pricing and hedging with minimum expected shortfall," Science & Finance (CFM) working paper archive 500029, Science & Finance, Capital Fund Management.
- Lisa Borland & Jean-Philippe Bouchaud, 2005. "On a multi-timescale statistical feedback model for volatility fluctuations," Science & Finance (CFM) working paper archive 500059, Science & Finance, Capital Fund Management.
- Ruipeng Liu & Mawuli Segnon & Oguzhan Cepni & Rangan Gupta, 2023. "Forecasting Volatility of Commodity, Currency, and Stock Markets: Evidence from Markov Switching Multifractal Models," Working Papers 202340, University of Pretoria, Department of Economics.
- Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
- Ola L{o}vsletten & Martin Rypdal, 2012. "A multifractal approach towards inference in finance," Papers 1202.5376, arXiv.org.
- Maganini, Natália Diniz & Da Silva Filho, Antônio Carlos & Lima, Fabiano Guasti, 2018. "Investigation of multifractality in the Brazilian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 258-271.
- Christophe Schinckus, 2011. "What can econophysics contribute to financial economics?," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 58(2), pages 147-163, June.
- Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
- Grobys, Klaus, 2023. "A multifractal model of asset (in)variances," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 85(C).
- Herrera, Ana María & Hu, Liang & Pastor, Daniel, 2018. "Forecasting crude oil price volatility," International Journal of Forecasting, Elsevier, vol. 34(4), pages 622-635.
- Ahmad Yamin S & Paya Ivan, 2020. "Temporal aggregation of random walk processes and implications for economic analysis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(2), pages 1-20, April.
- Lee, Hojin & Song, Jae Wook & Chang, Woojin, 2016. "Multifractal Value at Risk model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 113-122.
- Hainaut, Donatien, 2013. "A fractal version of the Hull–White interest rate model," Economic Modelling, Elsevier, vol. 31(C), pages 323-334.
- Zoltan Eisler & Janos Kertesz, 2004. "Multifractal model of asset returns with leverage effect," Papers cond-mat/0403767, arXiv.org, revised May 2004.
- Mawuli Segnon & Stelios Bekiros, 2019. "Forecasting Volatility in Cryptocurrency Markets," CQE Working Papers 7919, Center for Quantitative Economics (CQE), University of Muenster.