IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v13y2013i9p1375-1394.html
   My bibliography  Save this article

Relative forecasting performance of volatility models: Monte Carlo evidence

Author

Listed:
  • Thomas Lux
  • Leonardo Morales-Arias

Abstract

A Monte Carlo (MC) experiment is conducted to study the forecasting performance of a variety of volatility models under alternative data-generating processes (DGPs). The models included in the MC study are the (Fractionally Integrated) Generalized Autoregressive Conditional Heteroskedasticity models ((FI)GARCH), the Stochastic Volatility model (SV), the Long Memory Stochastic Volatility model (LMSV) and the Markov-switching Multifractal model (MSM). The MC study enables us to compare the relative forecasting performance of the models accounting for different characterizations of the latent volatility process: specifications that incorporate short/long memory, autoregressive components, stochastic shocks, Markov-switching and multifractality. Forecasts are evaluated by means of mean squared errors (MSE), mean absolute errors (MAE) and value-at-risk (VaR) diagnostics. Furthermore, complementarities between models are explored via forecast combinations. The results show that (i) the MSM model best forecasts volatility under any other alternative characterization of the latent volatility process and (ii) forecast combinations provide systematic improvements upon most single misspecified models, but are typically inferior to the MSM model even if the latter is applied to data governed by other processes.

Suggested Citation

  • Thomas Lux & Leonardo Morales-Arias, 2013. "Relative forecasting performance of volatility models: Monte Carlo evidence," Quantitative Finance, Taylor & Francis Journals, vol. 13(9), pages 1375-1394, September.
  • Handle: RePEc:taf:quantf:v:13:y:2013:i:9:p:1375-1394
    DOI: 10.1080/14697688.2013.795675
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2013.795675
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2013.795675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Yang K. & Perron, Pierre, 2010. "Modeling and forecasting stock return volatility using a random level shift model," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 138-156, January.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Calvet, Laurent & Fisher, Adlai, 2001. "Forecasting multifractal volatility," Journal of Econometrics, Elsevier, vol. 105(1), pages 27-58, November.
    4. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    2. Lyu, Yongjian & Wang, Peng & Wei, Yu & Ke, Rui, 2017. "Forecasting the VaR of crude oil market: Do alternative distributions help?," Energy Economics, Elsevier, vol. 66(C), pages 523-534.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lux, Thomas & Morales-Arias, Leonardo, 2010. "Relative forecasting performance of volatility models: Monte Carlo evidence," Kiel Working Papers 1582, Kiel Institute for the World Economy (IfW Kiel).
    2. Mawuli Segnon & Rangan Gupta & Keagile Lesame & Mark E. Wohar, 2021. "High-Frequency Volatility Forecasting of US Housing Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 62(2), pages 283-317, February.
    3. Eisler, Z. & Kertész, J., 2004. "Multifractal model of asset returns with leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 603-622.
    4. Segnon Mawuli & Lau Chi Keung & Wilfling Bernd & Gupta Rangan, 2022. "Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(1), pages 73-98, February.
    5. Eric M. Aldrich & Indra Heckenbach & Gregory Laughlin, 2014. "A Compound Multifractal Model for High-Frequency Asset Returns," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-05, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
    6. Nasr, Adnen Ben & Lux, Thomas & Ajmi, Ahdi Noomen & Gupta, Rangan, 2016. "Forecasting the volatility of the Dow Jones Islamic Stock Market Index: Long memory vs. regime switching," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 559-571.
    7. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    8. Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW Kiel).
    9. Aldrich, Eric M. & Heckenbach, Indra & Laughlin, Gregory, 2016. "A compound duration model for high-frequency asset returns," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 105-128.
    10. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    11. Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW Kiel).
    12. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    13. Krenar Avdulaj & Ladislav Kristoufek, 2020. "On Tail Dependence and Multifractality," Mathematics, MDPI, vol. 8(10), pages 1-13, October.
    14. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    15. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    16. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    17. Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2013. "A Markov-switching multifractal inter-trade duration model, with application to US equities," Journal of Econometrics, Elsevier, vol. 177(2), pages 320-342.
    18. Sattarhoff, Cristina & Lux, Thomas, 2021. "Forecasting the Variability of Stock Index Returns with the Multifractal Random Walk Model for Realized Volatilities," Economics Working Papers 2021-02, Christian-Albrechts-University of Kiel, Department of Economics.
    19. Onali, Enrico & Goddard, John, 2009. "Unifractality and multifractality in the Italian stock market," International Review of Financial Analysis, Elsevier, vol. 18(4), pages 154-163, September.
    20. Gabriel Rodríguez, 2015. "Modeling Latin-American Stock Markets Volatility: Varying Probabilities and Mean Reversion in a Random Level Shifts Model," Documentos de Trabajo / Working Papers 2015-403, Departamento de Economía - Pontificia Universidad Católica del Perú.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:13:y:2013:i:9:p:1375-1394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.