IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1806.07604.html
   My bibliography  Save this paper

Multifractal characteristics and return predictability in the Chinese stock markets

Author

Listed:
  • Xin-Lan Fu

    (ECUST)

  • Xing-Lu Gao

    (ECUST)

  • Zheng Shan

    (ECUST)

  • Zhi-Qiang Jiang

    (ECUST)

  • Wei-Xing Zhou

    (ECUST)

Abstract

By adopting Multifractal detrended fluctuation (MF-DFA) analysis methods, the multifractal nature is revealed in the high-frequency data of two typical indexes, the Shanghai Stock Exchange Composite 180 Index (SH180) and the Shenzhen Stock Exchange Composite Index (SZCI). The characteristics of the corresponding multifractal spectra are defined as a measurement of market volatility. It is found that there is a statistically significant relationship between the stock index returns and the spectral characteristics, which can be applied to forecast the future market return. The in-sample and out-of-sample tests on the return predictability of multifractal characteristics indicate the spectral width $\Delta {\alpha}$ is a significant and positive excess return predictor. Our results shed new lights on the application of multifractal nature in asset pricing.

Suggested Citation

  • Xin-Lan Fu & Xing-Lu Gao & Zheng Shan & Zhi-Qiang Jiang & Wei-Xing Zhou, 2018. "Multifractal characteristics and return predictability in the Chinese stock markets," Papers 1806.07604, arXiv.org.
  • Handle: RePEc:arx:papers:1806.07604
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1806.07604
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nasr, Adnen Ben & Lux, Thomas & Ajmi, Ahdi Noomen & Gupta, Rangan, 2016. "Forecasting the volatility of the Dow Jones Islamic Stock Market Index: Long memory vs. regime switching," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 559-571.
    2. Bacry, E. & Delour, J. & Muzy, J.F., 2001. "Modelling financial time series using multifractal random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 84-92.
    3. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    4. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractal analysis of Chinese stock volatilities based on the partition function approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4881-4888.
    5. Calvet, Laurent & Fisher, Adlai, 2001. "Forecasting multifractal volatility," Journal of Econometrics, Elsevier, vol. 105(1), pages 27-58, November.
    6. Laurent E. Calvet, 2004. "How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 49-83.
    7. Dewandaru, Ginanjar & Masih, Rumi & Bacha, Obiyathulla Ismath & Masih, A. Mansur. M., 2015. "Developing trading strategies based on fractal finance: An application of MF-DFA in the context of Islamic equities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 223-235.
    8. Chiang, I-Hsuan Ethan & Hughen, W. Keener, 2017. "Do oil futures prices predict stock returns?," Journal of Banking & Finance, Elsevier, vol. 79(C), pages 129-141.
    9. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    10. R. David Mclean & Jeffrey Pontiff, 2016. "Does Academic Research Destroy Stock Return Predictability?," Journal of Finance, American Finance Association, vol. 71(1), pages 5-32, February.
    11. Devpura, Neluka & Narayan, Paresh Kumar & Sharma, Susan Sunila, 2018. "Is stock return predictability time-varying?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 152-172.
    12. Laurent Calvet & Adlai Fisher, 2002. "Multifractality In Asset Returns: Theory And Evidence," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
    13. Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Narayan, Paresh Kumar, 2015. "Stock return forecasting: Some new evidence," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 38-51.
    14. J-F. Muzy & D. Sornette & J. delour & A. Arneodo, 2001. "Multifractal returns and hierarchical portfolio theory," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 131-148.
    15. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    16. Wei-Xing Zhou, 2009. "The components of empirical multifractality in financial returns," Papers 0908.1089, arXiv.org, revised Oct 2009.
    17. Filip Žikeš & Jozef Baruník & Nikhil Shenai, 2017. "Modeling and forecasting persistent financial durations," Econometric Reviews, Taylor & Francis Journals, vol. 36(10), pages 1081-1110, November.
    18. Chen, Hongtao & Wu, Chongfeng, 2011. "Forecasting volatility in Shanghai and Shenzhen markets based on multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2926-2935.
    19. Lee, Hojin & Song, Jae Wook & Chang, Woojin, 2016. "Multifractal Value at Risk model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 113-122.
    20. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    21. Li Guo & Lin Peng & Yubo Tao & Jun Tu, 2017. "Joint News, Attention Spillover,and Market Returns," Papers 1703.02715, arXiv.org, revised Nov 2022.
    22. Lux, Thomas & Kaizoji, Taisei, 2007. "Forecasting volatility and volume in the Tokyo Stock Market: Long memory, fractality and regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1808-1843, June.
    23. Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2013. "A Markov-switching multifractal inter-trade duration model, with application to US equities," Journal of Econometrics, Elsevier, vol. 177(2), pages 320-342.
    24. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    25. Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2016. "Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data," Energy Economics, Elsevier, vol. 56(C), pages 117-133.
    26. Herrera, Rodrigo & Rodriguez, Alejandro & Pino, Gabriel, 2017. "Modeling and forecasting extreme commodity prices: A Markov-Switching based extreme value model," Energy Economics, Elsevier, vol. 63(C), pages 129-143.
    27. Jaime Casassus & Freddy Higuera, 2012. "Short-horizon return predictability and oil prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(12), pages 1909-1934, December.
    28. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    29. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractality in stock indexes: Fact or Fiction?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3605-3614.
    30. Narayan, Paresh Kumar & Westerlund, Joakim, 2014. "Does cash flow predict returns?," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 230-236.
    31. Yudong Wang & Chongfeng Wu, 2013. "Efficiency of Crude Oil Futures Markets: New Evidence from Multifractal Detrending Moving Average Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 42(4), pages 393-414, December.
    32. Grahovac, Danijel & Leonenko, Nikolai N., 2014. "Detecting multifractal stochastic processes under heavy-tailed effects," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 78-89.
    33. Liu, Li & Wang, Yudong & Wan, Jieqiu, 2010. "Analysis of efficiency for Shenzhen stock market: Evidence from the source of multifractality," International Review of Financial Analysis, Elsevier, vol. 19(4), pages 237-241, September.
    34. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    35. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    36. Wei, Yu & Wang, Peng, 2008. "Forecasting volatility of SSEC in Chinese stock market using multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1585-1592.
    37. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    38. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    39. Chen, Jian & Jiang, Fuwei & Liu, Yangshu & Tu, Jun, 2017. "International volatility risk and Chinese stock return predictability," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 183-203.
    40. Thomas Lux & Leonardo Morales‐Arias & Cristina Sattarhoff, 2014. "Forecasting Daily Variations of Stock Index Returns with a Multifractal Model of Realized Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(7), pages 532-541, November.
    41. Zhi-Qiang Jiang & Wei-Xing Zhou, 2011. "Multifractal detrending moving average cross-correlation analysis," Papers 1103.2577, arXiv.org, revised Mar 2011.
    42. Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2017. "Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 692-704.
    43. Lawrenz, Jochen & Zorn, Josef, 2017. "Predicting international stock returns with conditional price-to-fundamental ratios," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 159-184.
    44. Wei, Yu & Chen, Wang & Lin, Yu, 2013. "Measuring daily Value-at-Risk of SSEC index: A new approach based on multifractal analysis and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2163-2174.
    45. Chuang, Wen-I & Huang, Teng-Ching & Lin, Bing-Huei, 2013. "Predicting volatility using the Markov-switching multifractal model: Evidence from S&P 100 index and equity options," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 168-187.
    46. Chronopoulos, Dimitris K. & Papadimitriou, Fotios I. & Vlastakis, Nikolaos, 2018. "Information demand and stock return predictability," Journal of International Money and Finance, Elsevier, vol. 80(C), pages 59-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tetsuya Takaishi, 2022. "Time Evolution of Market Efficiency and Multifractality of the Japanese Stock Market," JRFM, MDPI, vol. 15(1), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    2. Wei, Yu & Chen, Wang & Lin, Yu, 2013. "Measuring daily Value-at-Risk of SSEC index: A new approach based on multifractal analysis and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2163-2174.
    3. Tao, Qizhi & Wei, Yu & Liu, Jiapeng & Zhang, Ting, 2018. "Modeling and forecasting multifractal volatility established upon the heterogeneous market hypothesis," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 143-153.
    4. Ma, Feng & Wei, Yu & Huang, Dengshi & Chen, Yixiang, 2014. "Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 171-180.
    5. Wang, Yunqi & Zhou, Ti, 2023. "Out-of-sample equity premium prediction: The role of option-implied constraints," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 199-226.
    6. Liu, Zhichao & Ma, Feng & Long, Yujia, 2015. "High and low or close to close prices? Evidence from the multifractal volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 50-61.
    7. Yuan, Ying & Zhang, Tonghui, 2020. "Forecasting stock market in high and low volatility periods: a modified multifractal volatility approach," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Siokis, Fotios M., 2013. "Multifractal analysis of stock exchange crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1164-1171.
    9. Chen, Jian & Jiang, Fuwei & Liu, Yangshu & Tu, Jun, 2017. "International volatility risk and Chinese stock return predictability," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 183-203.
    10. Mawuli Segnon & Stelios Bekiros & Bernd Wilfling, 2018. "Forecasting Inflation Uncertainty in the G7 Countries," Econometrics, MDPI, vol. 6(2), pages 1-25, April.
    11. Liu, Zhicao & Ye, Yong & Ma, Feng & Liu, Jing, 2017. "Can economic policy uncertainty help to forecast the volatility: A multifractal perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 181-188.
    12. Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Tran, Vuong Thao, 2018. "Can economic policy uncertainty predict stock returns? Global evidence," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 55(C), pages 134-150.
    13. Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.
    14. Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
    15. Ma, Feng & Wang, Ruoxin & Lu, Xinjie & Wahab, M.I.M., 2021. "A comprehensive look at stock return predictability by oil prices using economic constraint approaches," International Review of Financial Analysis, Elsevier, vol. 78(C).
    16. Zhang, Yaojie & Wei, Yu & Ma, Feng & Yi, Yongsheng, 2019. "Economic constraints and stock return predictability: A new approach," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 1-9.
    17. Li, Zeming & Sakkas, Athanasios & Urquhart, Andrew, 2022. "Intraday time series momentum: Global evidence and links to market characteristics," Journal of Financial Markets, Elsevier, vol. 57(C).
    18. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
    19. Kukacka, Jiri & Kristoufek, Ladislav, 2021. "Does parameterization affect the complexity of agent-based models?," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 324-356.
    20. Cristina Sattarhoff & Marc Gronwald, 2018. "How to Measure Financial Market Efficiency? A Multifractality-Based Quantitative Approach with an Application to the European Carbon Market," CESifo Working Paper Series 7102, CESifo.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1806.07604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.