Forecasting market risk of portfolios: copula-Markov switching multifractal approach
Author
Abstract
Suggested Citation
DOI: 10.1080/1351847X.2017.1400453
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Mawuli Segnon & Mark Trede, 2017. "Forecasting Market Risk of Portfolios: Copula-Markov Switching Multifractal Approach," CQE Working Papers 6617, Center for Quantitative Economics (CQE), University of Muenster.
References listed on IDEAS
- Lux, Thomas, 2008.
"The Markov-Switching Multifractal Model of Asset Returns: GMM Estimation and Linear Forecasting of Volatility,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 194-210, April.
- Lux, Thomas, 2004. "The Markov-switching multi-fractal model of asset returns: GMM estimation and linear forecasting of volatility," Economics Working Papers 2004-11, Christian-Albrechts-University of Kiel, Department of Economics.
- Lux, Thomas, 2006. "The Markov-Switching Multifractal Model of asset returns: GMM estimation and linear forecasting of volatility," Economics Working Papers 2006-17, Christian-Albrechts-University of Kiel, Department of Economics.
- Bertrand Candelon & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2011.
"Backtesting Value-at-Risk: A GMM Duration-Based Test,"
Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 314-343, Spring.
- Gilbert COLLETAZ & Christophe HURLIN & Sessi TOKPAVI, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based Test," LEO Working Papers / DR LEO 266, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk : A GMM Duration-based Test," Post-Print halshs-00363165, HAL.
- Candelon, B. & Colletaz, G. & Hurlin, C. & Tokpavi, S., 2009. "Backtesting value-at-risk : a GMM duration-based test," Research Memorandum 062, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Gilbert COLLETAZ & Christophe HURLIN & Sessi TOKPAVI, 2009. "Backtesting Value-at-Risk: A GMM Duration-Based Test," LEO Working Papers / DR LEO 265, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Post-Print halshs-00364793, HAL.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk : A GMM Duration-based Test," Post-Print halshs-00363168, HAL.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Post-Print halshs-00364797, HAL.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk : A GMM Duration-based Test," Post-Print halshs-00363146, HAL.
- Christophe Hurlin & Gilbert Colletaz & Sessi Tokpavi & Bertrand Candelon, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Working Papers halshs-00329495, HAL.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based-Test," Post-Print halshs-00364796, HAL.
- Umberto Cherubini & Elisa Luciano, 2001. "Value-at-risk Trade-off and Capital Allocation with Copulas," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 30(2), pages 235-256, July.
- Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
- Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Mishra, Santosh, 2004. "Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood," International Journal of Forecasting, Elsevier, vol. 20(4), pages 629-645.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Calvet, Laurent & Fisher, Adlai, 2001.
"Forecasting multifractal volatility,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 27-58, November.
- Laurent Calvet & Adlai Fisher, 1999. "Forecasting Multifractal Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-017, New York University, Leonard N. Stern School of Business-.
- Laurent-Emmanuel Calvet & Adlai J. Fisher, 2001. "Forecasting multifractal volatility," Post-Print hal-00477952, HAL.
- Laurent Calvet, 2000. "Forecasting Multifractal Volatility," Harvard Institute of Economic Research Working Papers 1902, Harvard - Institute of Economic Research.
- Laurent E. Calvet, 2004.
"How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes,"
Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 49-83.
- Laurent-Emmanuel Calvet & Adlai J. Fisher, 2004. "How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes," Post-Print hal-00478472, HAL.
- Lux, Thomas & Morales-Arias, Leonardo, 2010. "Forecasting volatility under fractality, regime-switching, long memory and student-t innovations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2676-2692, November.
- Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
- Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 53-89.
- Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
- Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
- Clive W.J. Granger, 1999. "Outline of forecast theory using generalized cost functions," Spanish Economic Review, Springer;Spanish Economic Association, vol. 1(2), pages 161-173.
- Huang, Jen-Jsung & Lee, Kuo-Jung & Liang, Hueimei & Lin, Wei-Fu, 2009. "Estimating value at risk of portfolio by conditional copula-GARCH method," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 315-324, December.
- Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
- Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xingyu Dai & Dongna Zhang & Chi Keung Marco Lau & Qunwei Wang, 2023. "Multiobjective portfolio optimization: Forecasting and evaluation under investment horizon heterogeneity," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2167-2196, December.
- Gaete, Michael & Herrera, Rodrigo, 2023.
"Diversification benefits of commodities in portfolio allocation: A dynamic factor copula approach,"
Journal of Commodity Markets, Elsevier, vol. 32(C).
- Gaete, Michael & Herrera, Rodrigo, 2022. "Diversification benefits of commodities in portfolio allocation: A dynamic factor copula approach," MPRA Paper 115641, University Library of Munich, Germany.
- Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
- Wang, Yi & Sun, Qi & Zhang, Zilu & Chen, Liqing, 2022. "A risk measure of the stock market that is based on multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
- Rewat Khanthaporn, 2022. "Analysis of Nonlinear Comovement of Benchmark Thai Government Bond Yields," PIER Discussion Papers 183, Puey Ungphakorn Institute for Economic Research.
- Amaro, Raphael & Pinho, Carlos, 2022. "Energy commodities: A study on model selection for estimating Value-at-Risk," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 68, pages 5-27.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2015.
"Modeling and Forecasting Carbon Dioxide Emission Allowance Spot Price Volatility: Multifractal vs. GARCH-type Volatility Models,"
FinMaP-Working Papers
46, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Mawuli Segnon & Thomas Lux & Rangan Gupta, 2015. "Modeling and Forecasting Carbon Dioxide Emission Allowance Spot Price Volatility: Multifractal vs. GARCH-Type Volatility Models," Working Papers 201550, University of Pretoria, Department of Economics.
- Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2017. "Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 692-704.
- Nasr, Adnen Ben & Lux, Thomas & Ajmi, Ahdi Noomen & Gupta, Rangan, 2016.
"Forecasting the volatility of the Dow Jones Islamic Stock Market Index: Long memory vs. regime switching,"
International Review of Economics & Finance, Elsevier, vol. 45(C), pages 559-571.
- Nasr, Adnen Ben & Lux, Thomas & Ajm, Ahdi Noomen & Gupta, Rangan, 2014. "Forecasting the volatility of the dow jones islamic stock market index: Long memory vs. regime switching," Economics Working Papers 2014-07, Christian-Albrechts-University of Kiel, Department of Economics.
- Adnen Ben Nasr & Thomas Lux & Ahdi Noomen Ajmi & Rangan Gupta, 2014. "Forecasting the Volatility of the Dow Jones Islamic Stock Market Index: Long Memory vs. Regime Switching," Working Papers 2014-236, Department of Research, Ipag Business School.
- Adnen Ben Nasr & Thomas Lux & Ahdi N. Ajmi & Rangan Gupta, 2014. "Forecasting the Volatility of the Dow Jones Islamic Stock Market Index: Long Memory vs. Regime Switching," Working Papers 201412, University of Pretoria, Department of Economics.
- Ben Nasr, Adnen & Lux, Thomas & Ajmi, Ahdi Noomen & Gupta, Rangan, 2014. "Forecasting the Volatility of the Dow Jones Islamic Stock Market Index: Long Memory vs. Regime Switching," FinMaP-Working Papers 2, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
- Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2016. "Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data," Energy Economics, Elsevier, vol. 56(C), pages 117-133.
- Liu, Ruipeng & Lux, Thomas, 2010. "Flexible and robust modelling of volatility comovements: a comparison of two multifractal models," Kiel Working Papers 1594, Kiel Institute for the World Economy (IfW Kiel).
- Mawuli Segnon & Rangan Gupta & Keagile Lesame & Mark E. Wohar, 2021.
"High-Frequency Volatility Forecasting of US Housing Markets,"
The Journal of Real Estate Finance and Economics, Springer, vol. 62(2), pages 283-317, February.
- Mawuli Segnon & Rangan Gupta & Keagile Lesame & Mark E. Wohar, 2019. "High-Frequency Volatility Forecasting of US Housing Markets," Working Papers 201977, University of Pretoria, Department of Economics.
- Krzysztof Echaust & Małgorzata Just, 2021. "Tail Dependence between Crude Oil Volatility Index and WTI Oil Price Movements during the COVID-19 Pandemic," Energies, MDPI, vol. 14(14), pages 1-21, July.
- Mawuli Segnon & Stelios Bekiros & Bernd Wilfling, 2018.
"Forecasting Inflation Uncertainty in the G7 Countries,"
Econometrics, MDPI, vol. 6(2), pages 1-25, April.
- Mawuli Segnon & Stelios Bekiros & Bernd Wilfling, 2018. "Forecasting Inflation Uncertainty in the G7 Countries," CQE Working Papers 7118, Center for Quantitative Economics (CQE), University of Muenster.
- Charles, Amélie & Darné, Olivier, 2017.
"Forecasting crude-oil market volatility: Further evidence with jumps,"
Energy Economics, Elsevier, vol. 67(C), pages 508-519.
- Amélie Charles & Olivier Darné, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Post-Print hal-01598141, HAL.
- Stavros Degiannakis & Pamela Dent & Christos Floros, 2014.
"A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification,"
Manchester School, University of Manchester, vol. 82(1), pages 71-102, January.
- Degiannakis, Stavros & Dent, Pamela & Floros, Christos, 2014. "A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification," MPRA Paper 80431, University Library of Munich, Germany.
- Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
- Marius Lux & Wolfgang Karl Härdle & Stefan Lessmann, 2020.
"Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid,"
Computational Statistics, Springer, vol. 35(3), pages 947-981, September.
- Lux, Marius & Härdle, Wolfgang Karl & Lessmann, Stefan, 2018. "Data Driven Value-at-Risk Forecasting using a SVR-GARCH-KDE Hybrid," IRTG 1792 Discussion Papers 2018-001, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Paula V. Tofoli & Flavio A. Ziegelmann & Osvaldo Candido, 2017. "A Comparison Study of Copula Models for Europea Financial Index Returns," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 9(10), pages 155-178, October.
- Sattarhoff, Cristina & Lux, Thomas, 2021. "Forecasting the Variability of Stock Index Returns with the Multifractal Random Walk Model for Realized Volatilities," Economics Working Papers 2021-02, Christian-Albrechts-University of Kiel, Department of Economics.
- Szymon Lis & Marcin Chlebus, 2021. "Comparison of the accuracy in VaR forecasting for commodities using different methods of combining forecasts," Working Papers 2021-11, Faculty of Economic Sciences, University of Warsaw.
- Krzysztof Echaust & Małgorzata Just, 2020. "Value at Risk Estimation Using the GARCH-EVT Approach with Optimal Tail Selection," Mathematics, MDPI, vol. 8(1), pages 1-24, January.
- Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
- Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
- Segnon Mawuli & Lau Chi Keung & Wilfling Bernd & Gupta Rangan, 2022.
"Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(1), pages 73-98, February.
- Mawuli Segnon & Chi Keung Lau & Bernd Wilfling & Rangan Gupta, 2017. "Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data," CQE Working Papers 6117, Center for Quantitative Economics (CQE), University of Muenster.
- Mawuli Segnon & Chi Keung Lau & Bernd Wilfling & Rangan Gupta, 2017. "Are Multifractal Processes Suited to Forecasting Electricity Price Volatility? Evidence from Australian Intraday Data," Working Papers 201739, University of Pretoria, Department of Economics.
More about this item
JEL classification:
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
- C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:24:y:2018:i:14:p:1123-1143. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.