IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v18y2003i3p401-415.html
   My bibliography  Save this article

Multiscale estimation of processes related to the fractional Black-Scholes equation

Author

Listed:
  • R. Fernández-Pascual
  • M. Ruiz-Medina
  • J. Angulo

Abstract

We consider a fractional-order differential equation involving fractal activity time to represent the stochastic behaviour of a log-price process of an underlying asset. The log-price process is defined in terms of fractional integration of the fractional derivative of Brownian motion on fractal time. A stable solution to the extrapolation and filtering problems associated is obtained in terms of covariance vaguelette functions (Angulo and Ruiz-Medina 1999). A simulation study is carried out to illustrate the methodology presented. Copyright Physica-Verlag 2003

Suggested Citation

  • R. Fernández-Pascual & M. Ruiz-Medina & J. Angulo, 2003. "Multiscale estimation of processes related to the fractional Black-Scholes equation," Computational Statistics, Springer, vol. 18(3), pages 401-415, September.
  • Handle: RePEc:spr:compst:v:18:y:2003:i:3:p:401-415
    DOI: 10.1007/BF03354606
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF03354606
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF03354606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Calvet, Laurent & Fisher, Adlai, 2001. "Forecasting multifractal volatility," Journal of Econometrics, Elsevier, vol. 105(1), pages 27-58, November.
    2. Niels VÖver Hartvig & Jens Ledet Jensen & Jan Pedersen, 2001. "A class of risk neutral densities with heavy tails," Finance and Stochastics, Springer, vol. 5(1), pages 115-128.
    3. Ruiz-Medina, M. D. & Anh, V. V. & Angulo, J. M., 2001. "Stochastic fractional-order differential models with fractal boundary conditions," Statistics & Probability Letters, Elsevier, vol. 54(1), pages 47-60, August.
    4. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    2. Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW Kiel).
    3. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    4. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    5. Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2013. "A Markov-switching multifractal inter-trade duration model, with application to US equities," Journal of Econometrics, Elsevier, vol. 177(2), pages 320-342.
    6. Aldrich, Eric M. & Heckenbach, Indra & Laughlin, Gregory, 2016. "A compound duration model for high-frequency asset returns," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 105-128.
    7. Calvet, Laurent E. & Fearnley, Marcus & Fisher, Adlai J. & Leippold, Markus, 2015. "What is beneath the surface? Option pricing with multifrequency latent states," Journal of Econometrics, Elsevier, vol. 187(2), pages 498-511.
    8. Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.
    9. Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
    10. Mawuli Segnon & Rangan Gupta & Keagile Lesame & Mark E. Wohar, 2021. "High-Frequency Volatility Forecasting of US Housing Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 62(2), pages 283-317, February.
    11. Julien Idier, 2011. "Long-term vs. short-term comovements in stock markets: the use of Markov-switching multifractal models," The European Journal of Finance, Taylor & Francis Journals, vol. 17(1), pages 27-48.
    12. M. Rypdal & O. L{o}vsletten, 2011. "Multifractal modeling of short-term interest rates," Papers 1111.5265, arXiv.org.
    13. Nasr, Adnen Ben & Lux, Thomas & Ajmi, Ahdi Noomen & Gupta, Rangan, 2016. "Forecasting the volatility of the Dow Jones Islamic Stock Market Index: Long memory vs. regime switching," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 559-571.
    14. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    15. Eisler, Z. & Kertész, J., 2004. "Multifractal model of asset returns with leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 603-622.
    16. Thomas Lux & Leonardo Morales-Arias, 2013. "Relative forecasting performance of volatility models: Monte Carlo evidence," Quantitative Finance, Taylor & Francis Journals, vol. 13(9), pages 1375-1394, September.
    17. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    18. Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW Kiel).
    19. Lux, Thomas, 2013. "Exact solutions for the transient densities of continuous-time Markov switching models: With an application to the poisson multifractal model," Kiel Working Papers 1871, Kiel Institute for the World Economy (IfW Kiel).
    20. Segnon Mawuli & Lau Chi Keung & Wilfling Bernd & Gupta Rangan, 2022. "Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(1), pages 73-98, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:18:y:2003:i:3:p:401-415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.