IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v21y2022icp69-95.html
   My bibliography  Save this article

Inference for Nonlinear State Space Models: A Comparison of Different Methods applied to Markov-Switching Multifractal Models

Author

Listed:
  • Lux, Thomas

Abstract

Nonlinear, non-Gaussian state space models have found wide applications in many areas. These models usually do not allow for an analytical representation of their likelihood function and thus, sequential Monte Carlo or particle filter methods are mostly applied to estimate their parameters. Finding the best-fitting parameters of a model is a non-trivial task since stochastic approximations lead to non-smooth likelihood functions. Recently proposed iterative filtering algorithms developed for this purpose are compared with simpler on-line filters and more traditional methods of inference. A highly nonlinear class of Markov-switching models, the so called Markov-switching multifractal model (MSM) is used as illustrative example in the comparison of different optimisation routines. Besides the well-established univariate discrete-time MSM, univariate and multivariate continuous-time versions of MSM are considered. Monte Carlo simulation experiments indicate that across a variety of MSM specifications, the classical Nelder-Mead or simplex algorithm appears still as more efficient and robust compared to a number of online and iterated filters. A very close competitor is one of the recently proposed iterated filters while other alternatives are mostly dominated by these two algorithms. An empirical application of both discrete and continuous-time MSM to seven financial time series shows that both models dominate GARCH and FIGARCH models in terms of in-sample goodness-of-fit. Out-of-sample forecast comparisons show in the majority of cases a clear dominance of the continuous-time MSM under a mean absolute error criterion, and less conclusive results under a mean squared error criterion.

Suggested Citation

  • Lux, Thomas, 2022. "Inference for Nonlinear State Space Models: A Comparison of Different Methods applied to Markov-Switching Multifractal Models," Econometrics and Statistics, Elsevier, vol. 21(C), pages 69-95.
  • Handle: RePEc:eee:ecosta:v:21:y:2022:i:c:p:69-95
    DOI: 10.1016/j.ecosta.2020.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306220300307
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2020.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malik, Sheheryar & Pitt, Michael K., 2011. "Particle filters for continuous likelihood evaluation and maximisation," Journal of Econometrics, Elsevier, vol. 165(2), pages 190-209.
    2. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2007. "Estimating Macroeconomic Models: A Likelihood Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(4), pages 1059-1087.
    3. Lux, Thomas, 2008. "The Markov-Switching Multifractal Model of Asset Returns: GMM Estimation and Linear Forecasting of Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 194-210, April.
    4. Gilli, M. & Winker, P., 2003. "A global optimization heuristic for estimating agent based models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 299-312, March.
    5. Calvet, Laurent E. & Fisher, Adlai J. & Thompson, Samuel B., 2006. "Volatility comovement: a multifrequency approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 179-215.
    6. Calvet, Laurent & Fisher, Adlai, 2001. "Forecasting multifractal volatility," Journal of Econometrics, Elsevier, vol. 105(1), pages 27-58, November.
    7. Laurent E. Calvet, 2004. "How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 49-83.
    8. Aaron A. King & Edward L. Ionides & Mercedes Pascual & Menno J. Bouma, 2008. "Inapparent infections and cholera dynamics," Nature, Nature, vol. 454(7206), pages 877-880, August.
    9. Liu, Ruipeng & Lux, Thomas, 2017. "Generalized Method of Moment estimation of multivariate multifractal models," Economic Modelling, Elsevier, vol. 67(C), pages 136-148.
    10. Andreasen, Martin M., 2011. "Non-linear DSGE models and the optimized central difference particle filter," Journal of Economic Dynamics and Control, Elsevier, vol. 35(10), pages 1671-1695, October.
    11. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    12. Zhenxi Chen & Thomas Lux, 2018. "Estimation of Sentiment Effects in Financial Markets: A Simulated Method of Moments Approach," Computational Economics, Springer;Society for Computational Economics, vol. 52(3), pages 711-744, October.
    13. King, Aaron A. & Nguyen, Dao & Ionides, Edward L., 2016. "Statistical Inference for Partially Observed Markov Processes via the R Package pomp," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i12).
    14. Ruipeng Liu & Thomas Lux, 2015. "Non-homogeneous volatility correlations in the bivariate multifractal model," The European Journal of Finance, Taylor & Francis Journals, vol. 21(12), pages 971-991, September.
    15. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    16. Michael Pitt & Sheheryar Malik & Arnaud Doucet, 2014. "Simulated likelihood inference for stochastic volatility models using continuous particle filtering," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 527-552, June.
    17. Bhadra, Anindya & Ionides, Edward L. & Laneri, Karina & Pascual, Mercedes & Bouma, Menno & Dhiman, Ramesh C., 2011. "Malaria in Northwest India: Data Analysis via Partially Observed Stochastic Differential Equation Models Driven by Lévy Noise," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 440-451.
    18. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    19. repec:dau:papers:123456789/7305 is not listed on IDEAS
    20. Lux, Thomas, 2018. "Estimation of agent-based models using sequential Monte Carlo methods," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 391-408.
    21. Thomas Lux & Leonardo Morales‐Arias & Cristina Sattarhoff, 2014. "Forecasting Daily Variations of Stock Index Returns with a Multifractal Model of Realized Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(7), pages 532-541, November.
    22. N. Chopin & P. E. Jacob & O. Papaspiliopoulos, 2013. "SMC-super-2: an efficient algorithm for sequential analysis of state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 397-426, June.
    23. Ghonghadze, Jaba & Lux, Thomas, 2016. "Bringing an elementary agent-based model to the data: Estimation via GMM and an application to forecasting of asset price volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 1-19.
    24. Hedibert F. Lopes & Ruey S. Tsay, 2011. "Particle filters and Bayesian inference in financial econometrics," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(1), pages 168-209, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lux, Thomas, 2018. "Inference for nonlinear state space models: A comparison of different methods applied to Markov-switching multifractal models," Economics Working Papers 2018-07, Christian-Albrechts-University of Kiel, Department of Economics.
    2. Calvet, Laurent E. & Fearnley, Marcus & Fisher, Adlai J. & Leippold, Markus, 2015. "What is beneath the surface? Option pricing with multifrequency latent states," Journal of Econometrics, Elsevier, vol. 187(2), pages 498-511.
    3. Julien Idier, 2011. "Long-term vs. short-term comovements in stock markets: the use of Markov-switching multifractal models," The European Journal of Finance, Taylor & Francis Journals, vol. 17(1), pages 27-48.
    4. Nasr, Adnen Ben & Lux, Thomas & Ajmi, Ahdi Noomen & Gupta, Rangan, 2016. "Forecasting the volatility of the Dow Jones Islamic Stock Market Index: Long memory vs. regime switching," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 559-571.
    5. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    6. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
    7. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    8. Calvet, Laurent-Emmanuel & Czellar , Veronika, 2011. "state-observation sampling and the econometrics of learning models," HEC Research Papers Series 947, HEC Paris.
    9. M. Rypdal & O. L{o}vsletten, 2011. "Multifractal modeling of short-term interest rates," Papers 1111.5265, arXiv.org.
    10. Kukacka, Jiri & Kristoufek, Ladislav, 2021. "Does parameterization affect the complexity of agent-based models?," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 324-356.
    11. Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW Kiel).
    12. Segnon Mawuli & Lau Chi Keung & Wilfling Bernd & Gupta Rangan, 2022. "Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(1), pages 73-98, February.
    13. Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2016. "Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data," Energy Economics, Elsevier, vol. 56(C), pages 117-133.
    14. Lee, Hojin & Song, Jae Wook & Chang, Woojin, 2016. "Multifractal Value at Risk model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 113-122.
    15. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    16. Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    17. Lux, Thomas, 2018. "Estimation of agent-based models using sequential Monte Carlo methods," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 391-408.
    18. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    19. Lux, Thomas, 2017. "Estimation of agent-based models using sequential Monte Carlo methods," Economics Working Papers 2017-07, Christian-Albrechts-University of Kiel, Department of Economics.
    20. Calvet, Laurent E. & Czellar, Veronika, 2015. "Through the looking glass: Indirect inference via simple equilibria," Journal of Econometrics, Elsevier, vol. 185(2), pages 343-358.

    More about this item

    Keywords

    Partially observed Markov processes; State space models; Markov-switching mulitfractal model; Nonlinear filtering; Forecasting of volatility;
    All these keywords.

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:21:y:2022:i:c:p:69-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.