IDEAS home Printed from https://ideas.repec.org/r/ehl/lserod/5875.html
   My bibliography  Save this item

Inference in ARCH and GARCH models with heavy-tailed errors

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bitros, George C. & Nadiri, M. Ishaq, 2017. "Behavior of business investment in the USA under variable and proportional rates of replacement," MPRA Paper 80594, University Library of Munich, Germany.
  2. Yun Gong & Zhouping Li & Liang Peng, 2010. "Empirical likelihood intervals for conditional Value‐at‐Risk in ARCH/GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 65-75, March.
  3. Francq, Christian & Zakoïan, Jean-Michel, 2009. "Testing the Nullity of GARCH Coefficients: Correction of the Standard Tests and Relative Efficiency Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 313-324.
  4. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, October.
  5. Xibin Zhang & Maxwell L. King, 2011. "Bayesian semiparametric GARCH models," Monash Econometrics and Business Statistics Working Papers 24/11, Monash University, Department of Econometrics and Business Statistics.
  6. Elena Andreou, 2004. "The Impact of Sampling Frequency and Volatility Estimators on Change-Point Tests," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 290-318.
  7. Meister, Alexander & Kreiß, Jens-Peter, 2016. "Statistical inference for nonparametric GARCH models," Stochastic Processes and their Applications, Elsevier, vol. 126(10), pages 3009-3040.
  8. Wang, Xuqin & Li, Muyi, 2023. "Bootstrapping the transformed goodness-of-fit test on heavy-tailed GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
  9. Fiorentini, Gabriele & Sentana, Enrique, 2019. "Consistent non-Gaussian pseudo maximum likelihood estimators," Journal of Econometrics, Elsevier, vol. 213(2), pages 321-358.
  10. Davidson, Russell & Flachaire, Emmanuel, 2007. "Asymptotic and bootstrap inference for inequality and poverty measures," Journal of Econometrics, Elsevier, vol. 141(1), pages 141-166, November.
  11. Jianqing Fan & Mingjin Wang & Qiwei Yao, 2008. "Modelling multivariate volatilities via conditionally uncorrelated components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 679-702, September.
  12. DOLADO , Juan J. & RODRIGUEZ-POO, Juan & VEREDAS, David, 2004. "Testing weak exogeneity in the exponential family : an application to financial point processes," LIDAM Discussion Papers CORE 2004049, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  13. Nazim Regnard & Jean‐Michel Zakoïan, 2010. "Structure and estimation of a class of nonstationary yet nonexplosive GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 348-364, September.
  14. João Henrique G. Mazzeu & Gloria González-Rivera & Esther Ruiz & Helena Veiga, 2020. "A bootstrap approach for generalized Autocontour testing Implications for VIX forecast densities," Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 971-990, November.
  15. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
  16. Pan, Jiazhu & Wang, Hui & Tong, Howell, 2008. "Estimation and tests for power-transformed and threshold GARCH models," Journal of Econometrics, Elsevier, vol. 142(1), pages 352-378, January.
  17. Cowell, Frank A. & Flachaire, Emmanuel, 2007. "Income distribution and inequality measurement: The problem of extreme values," Journal of Econometrics, Elsevier, vol. 141(2), pages 1044-1072, December.
  18. Alexis Akira Toda & Kieran James Walsh, 2017. "Fat tails and spurious estimation of consumption‐based asset pricing models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1156-1177, September.
  19. Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
  20. Mátyás Barczy & Márton Ispány & Gyula Pap, 2014. "Asymptotic Behavior of Conditional Least Squares Estimators for Unstable Integer-valued Autoregressive Models of Order 2," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 866-892, December.
  21. Chen, Min & Zhu, Ke, 2013. "Sign-based portmanteau test for ARCH-type models with heavy-tailed innovations," MPRA Paper 50487, University Library of Munich, Germany.
  22. Storti, Giuseppe & Wang, Chao, 2022. "A multivariate semi-parametric portfolio risk optimization and forecasting framework," MPRA Paper 115266, University Library of Munich, Germany.
  23. Jungsik Noh & Sangyeol Lee, 2016. "Quantile Regression for Location-Scale Time Series Models with Conditional Heteroscedasticity," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 700-720, September.
  24. repec:dau:papers:123456789/2285 is not listed on IDEAS
  25. Markus Neuhäuser, 2005. "Exact tests based on the Baumgartner-Weiß-Schindler statistic—A survey," Statistical Papers, Springer, vol. 46(1), pages 1-29, January.
  26. Beutner, Eric & Heinemann, Alexander & Smeekes, Stephan, 2024. "A residual bootstrap for conditional Value-at-Risk," Journal of Econometrics, Elsevier, vol. 238(2).
  27. Spierdijk, Laura, 2016. "Confidence intervals for ARMA–GARCH Value-at-Risk: The case of heavy tails and skewness," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 545-559.
  28. Anna Kiriliouk & Chen Zhou, 2024. "Tail Risk Analysis for Financial Time Series," Papers 2409.18643, arXiv.org.
  29. Prono Todd, 2018. "Closed-form estimators for finite-order ARCH models as simple and competitive alternatives to QMLE," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(5), pages 1-25, December.
  30. Christian Francq & Jean-Michel Zakoïan, 2013. "Optimal predictions of powers of conditionally heteroscedastic processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 345-367, March.
  31. M. Jiménez Gamero, 2014. "On the empirical characteristic function process of the residuals in GARCH models and applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 409-432, June.
  32. Chao Zhang & Xingyue Pu & Mihai Cucuringu & Xiaowen Dong, 2023. "Graph Neural Networks for Forecasting Multivariate Realized Volatility with Spillover Effects," Papers 2308.01419, arXiv.org.
  33. Camponovo, Lorenzo & Scaillet, Olivier & Trojani, Fabio, 2012. "Robust subsampling," Journal of Econometrics, Elsevier, vol. 167(1), pages 197-210.
  34. Helen Caraveli & Ioannis Chatzigiatroudakis & Evangelos Paravalos, 2018. "Determinants of growth differences between Eastern and Southern EU countries: A panel-data approach," Working Papers 201803, Athens University Of Economics and Business, Department of Economics.
  35. Cavaliere, Giuseppe & Nielsen, Heino Bohn & Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2022. "Bootstrap inference on the boundary of the parameter space, with application to conditional volatility models," Journal of Econometrics, Elsevier, vol. 227(1), pages 241-263.
  36. Aguilar, Mike & Hill, Jonathan B., 2015. "Robust score and portmanteau tests of volatility spillover," Journal of Econometrics, Elsevier, vol. 184(1), pages 37-61.
  37. Perera, Indeewara & Silvapulle, Mervyn J., 2023. "Bootstrap specification tests for dynamic conditional distribution models," Journal of Econometrics, Elsevier, vol. 235(2), pages 949-971.
  38. George C. Bitros, 2017. "Germany and Greece: A mapping of their great divide and its EU implications," Working Papers 201706, Athens University Of Economics and Business, Department of Economics.
  39. Dimitris N. Politis & Dimitrios D. Thomakos, 2007. "NoVaS Transformations: Flexible Inference for Volatility Forecasting," Working Paper series 44_07, Rimini Centre for Economic Analysis.
  40. Politis, Dimitris N., 2004. "A heavy-tailed distribution for ARCH residuals with application to volatility prediction," University of California at San Diego, Economics Working Paper Series qt7r89639x, Department of Economics, UC San Diego.
  41. Oliver Linton & Dajing Shang & Yang Yan, 2012. "Efficient estimation of conditional risk measures in a semiparametric GARCH model," CeMMAP working papers CWP25/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  42. Gabriele Fiorentini & Enrique Sentana, 2007. "On the efficiency and consistency of likelihood estimation in multivariate conditionally heteroskedastic dynamic regression models," Working Paper series 38_07, Rimini Centre for Economic Analysis.
  43. Guo, Zi-Yi, 2017. "Empirical Performance of GARCH Models with Heavy-tailed Innovations," EconStor Preprints 167626, ZBW - Leibniz Information Centre for Economics.
  44. Stelios Arvanitis, 2017. "Non-Emptyness of Stochastic Dominance Effiicient Sets via Stochastic Spanning," Working Papers 201710, Athens University Of Economics and Business, Department of Economics.
  45. Politis, D N, 2009. "Higher-Order Accurate, Positive Semi-definite Estimation of Large-Sample Covariance and Spectral Density Matrices," University of California at San Diego, Economics Working Paper Series qt66w826hz, Department of Economics, UC San Diego.
  46. Li, Dong & Ling, Shiqing & Zhu, Ke, 2016. "ZD-GARCH model: a new way to study heteroscedasticity," MPRA Paper 68621, University Library of Munich, Germany.
  47. Dennis Kristensen, 2009. "On stationarity and ergodicity of the bilinear model with applications to GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 125-144, January.
  48. Xibin Zhang & Maxwell L. King, 2013. "Gaussian kernel GARCH models," Monash Econometrics and Business Statistics Working Papers 19/13, Monash University, Department of Econometrics and Business Statistics.
  49. Zhu, Ke & Li, Wai Keung, 2013. "A new Pearson-type QMLE for conditionally heteroskedastic models," MPRA Paper 52344, University Library of Munich, Germany.
  50. repec:bgu:wpaper:0607 is not listed on IDEAS
  51. Polonik, Wolfgang & Yao, Qiwei, 2008. "Testing for multivariate volatility functions using minimum volume sets and inverse regression," Journal of Econometrics, Elsevier, vol. 147(1), pages 151-162, November.
  52. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
  53. Huang, Da & Wang, Hansheng & Yao, Qiwei, 2008. "Estimating GARCH models: when to use what?," LSE Research Online Documents on Economics 5398, London School of Economics and Political Science, LSE Library.
  54. Arvanitis, Stelios, 2019. "Stable limit theory for the Gaussian QMLE in a non-stationary asymmetric GARCH model," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 166-172.
  55. Hill, Jonathan B. & Aguilar, Mike, 2013. "Moment condition tests for heavy tailed time series," Journal of Econometrics, Elsevier, vol. 172(2), pages 255-274.
  56. Ngozi G. Emenogu & Monday Osagie Adenomon & Nwaze Obini Nweze, 2020. "On the volatility of daily stock returns of Total Nigeria Plc: evidence from GARCH models, value-at-risk and backtesting," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-25, December.
  57. Dimitris N. Politis, 2004. "A Heavy-Tailed Distribution for ARCH Residuals with Application to Volatility Prediction," Annals of Economics and Finance, Society for AEF, vol. 5(2), pages 283-298, November.
  58. Stelios Arvanitis & Sofia Anyfantaki, 2020. "On the limit theory of the Gaussian SQMLE in the EGARCH(1,1) model," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 341-350, March.
  59. Huan Gong & Dong Li, 2020. "On the three‐step non‐Gaussian quasi‐maximum likelihood estimation of heavy‐tailed double autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 883-891, November.
  60. Gadat, Sébastien & Costa, Manon, 2020. "Non asymptotic controls on a stochastic algorithm for superquantile approximation," TSE Working Papers 20-1149, Toulouse School of Economics (TSE).
  61. Hallin, Marc & La Vecchia, Davide, 2017. "R-estimation in semiparametric dynamic location-scale models," Journal of Econometrics, Elsevier, vol. 196(2), pages 233-247.
  62. repec:hum:wpaper:sfb649dp2014-012 is not listed on IDEAS
  63. Ivanović, Blagoje & Milošević, Bojana & Obradović, Marko, 2020. "Comparison of symmetry tests against some skew-symmetric alternatives in i.i.d. and non-i.i.d. setting," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
  64. Giuseppe Cavaliere & Rasmus Søndergaard Pedersen & Anders Rahbek, 2018. "The Fixed Volatility Bootstrap for a Class of Arch(q) Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 920-941, November.
  65. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2021. "Bayesian estimation for a semiparametric nonlinear volatility model," Economic Modelling, Elsevier, vol. 98(C), pages 361-370.
  66. Conrad, Christian & Mammen, Enno, 2016. "Asymptotics for parametric GARCH-in-Mean models," Journal of Econometrics, Elsevier, vol. 194(2), pages 319-329.
  67. Bonsoo Koo & Oliver Linton, 2013. "Let's get LADE: robust estimation of semiparametric multiplicative volatility models," CeMMAP working papers 11/13, Institute for Fiscal Studies.
  68. Luger, Richard, 2012. "Finite-sample bootstrap inference in GARCH models with heavy-tailed innovations," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3198-3211.
  69. M. Angeles Carnero, 2004. "Persistence and Kurtosis in GARCH and Stochastic Volatility Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 319-342.
  70. Natasha Miaouli & Panagiota Koliousi, 2018. "Efficient bargaining versus Right to manage in the era of liberalization," Working Papers 201804, Athens University Of Economics and Business, Department of Economics.
  71. Javed Farrukh & Podgórski Krzysztof, 2017. "Tail Behavior and Dependence Structure in the APARCH Model," Journal of Time Series Econometrics, De Gruyter, vol. 9(2), pages 1-48, July.
  72. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
  73. Ha, Jeongcheol & Lee, Taewook, 2011. "NM-QELE for ARMA-GARCH models with non-Gaussian innovations," Statistics & Probability Letters, Elsevier, vol. 81(6), pages 694-703, June.
  74. Giuseppe Cavaliere & Iliyan Georgiev & A. M. Robert Taylor, 2013. "Wild Bootstrap of the Sample Mean in the Infinite Variance Case," Econometric Reviews, Taylor & Francis Journals, vol. 32(2), pages 204-219, February.
  75. Hoga, Yannick, 2021. "The uncertainty in extreme risk forecasts from covariate-augmented volatility models," International Journal of Forecasting, Elsevier, vol. 37(2), pages 675-686.
  76. Chen, Min & Zhu, Ke, 2015. "Sign-based portmanteau test for ARCH-type models with heavy-tailed innovations," Journal of Econometrics, Elsevier, vol. 189(2), pages 313-320.
  77. Alexander Heinemann, 2019. "A Bootstrap Test for the Existence of Moments for GARCH Processes," Papers 1902.01808, arXiv.org, revised Jul 2019.
  78. Oliver Linton & Dajing Shang & Yang Yan, 2012. "Efficient estimation of conditional risk measures in a semiparametric GARCH model," CeMMAP working papers 25/12, Institute for Fiscal Studies.
  79. Bali, Rakesh & Guirguis, Hany, 2007. "Extreme observations and non-normality in ARCH and GARCH," International Review of Economics & Finance, Elsevier, vol. 16(3), pages 332-346.
  80. Liu, Wei-han, 2018. "Hidden Markov model analysis of extreme behaviors of foreign exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1007-1019.
  81. Alexander Heinemann & Sean Telg, 2018. "A Residual Bootstrap for Conditional Expected Shortfall," Papers 1811.11557, arXiv.org.
  82. Wang, Hui & Pan, Jiazhu, 2014. "Normal mixture quasi maximum likelihood estimation for non-stationary TGARCH(1,1) models," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 117-123.
  83. Arvanitis, Stelios & Louka, Alexandros, 2016. "A CLT for martingale transforms with infinite variance," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 116-123.
  84. Rasmus Søndergaard Pedersen & Anders Rahbek, 2015. "Nonstationary ARCH and GARCH with t-distributed Innovations," CREATES Research Papers 2015-27, Department of Economics and Business Economics, Aarhus University.
  85. Wang, Chuan-Sheng & Zhao, Zhibiao, 2016. "Conditional Value-at-Risk: Semiparametric estimation and inference," Journal of Econometrics, Elsevier, vol. 195(1), pages 86-103.
  86. Kristensen Dennis & Rahbek Anders, 2009. "Asymptotics of the QMLE for Non-Linear ARCH Models," Journal of Time Series Econometrics, De Gruyter, vol. 1(1), pages 1-38, April.
  87. Francq, Christian & Zakoian, Jean-Michel, 2015. "Looking for efficient qml estimation of conditional value-at-risk at multiple risk levels," MPRA Paper 67195, University Library of Munich, Germany.
  88. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
  89. Arvanitis, Stelios & Louka, Alexandros, 2017. "Stable limits for the Gaussian QMLE in the non-stationary GARCH(1,1) model," Economics Letters, Elsevier, vol. 161(C), pages 135-137.
  90. Mazur Błażej & Pipień Mateusz, 2018. "Time-varying asymmetry and tail thickness in long series of daily financial returns," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(5), pages 1-21, December.
  91. Francq, Christian & Lepage, Guillaume & Zakoïan, Jean-Michel, 2011. "Two-stage non Gaussian QML estimation of GARCH models and testing the efficiency of the Gaussian QMLE," Journal of Econometrics, Elsevier, vol. 165(2), pages 246-257.
  92. Taewook Lee & Sangyeol Lee, 2009. "Normal Mixture Quasi‐maximum Likelihood Estimator for GARCH Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 157-170, March.
  93. Jiang, Feiyu & Li, Dong & Zhu, Ke, 2021. "Adaptive inference for a semiparametric generalized autoregressive conditional heteroskedasticity model," Journal of Econometrics, Elsevier, vol. 224(2), pages 306-329.
  94. Feiyu Jiang & Dong Li & Ke Zhu, 2019. "Adaptive inference for a semiparametric generalized autoregressive conditional heteroskedasticity model," Papers 1907.04147, arXiv.org, revised Oct 2020.
  95. Li, Dong & Zhang, Xingfa & Zhu, Ke & Ling, Shiqing, 2018. "The ZD-GARCH model: A new way to study heteroscedasticity," Journal of Econometrics, Elsevier, vol. 202(1), pages 1-17.
  96. Delaigle, Aurore & Meister, Alexander & Rombouts, Jeroen, 2016. "Root-T consistent density estimation in GARCH models," Journal of Econometrics, Elsevier, vol. 192(1), pages 55-63.
  97. Das, Suman & Roy, Saikat Sinha, 2023. "Following the leaders? A study of co-movement and volatility spillover in BRICS currencies," Economic Systems, Elsevier, vol. 47(2).
  98. Giuseppe Storti & Chao Wang, 2022. "A semi-parametric marginalized dynamic conditional correlation framework," Papers 2207.04595, arXiv.org, revised Jul 2024.
  99. Tinkl, Fabian, 2010. "Asymptotic theory for M estimators for martingale differences with applications to GARCH models," FAU Discussion Papers in Economics 09/2010, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
  100. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
  101. Stylianos G. Gogos & Dimitris Papageorgiou & Vanghelis Vassilatos, 2017. "Rent Seeking Activities and Aggregate Economic Performance - The Case of Greece," Working Papers 201712, Athens University Of Economics and Business, Department of Economics.
  102. Li, Dong & Li, Muyi & Wu, Wuqing, 2014. "On dynamics of volatilities in nonstationary GARCH models," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 86-90.
  103. Preminger, Arie & Storti, Giuseppe, 2014. "Least squares estimation for GARCH (1,1) model with heavy tailed errors," MPRA Paper 59082, University Library of Munich, Germany.
  104. Zhao, Zhibiao, 2010. "Density estimation for nonlinear parametric models with conditional heteroscedasticity," Journal of Econometrics, Elsevier, vol. 155(1), pages 71-82, March.
  105. Bertsatos, Georgios & Sakellaris, Plutarchos & Tsionas, Mike G., 2017. "Did the financial crisis affect the market valuation of large systemic U.S. banks?," Journal of Financial Stability, Elsevier, vol. 32(C), pages 115-123.
  106. Szczygielski, Jan Jakub & Brzeszczyński, Janusz & Charteris, Ailie & Bwanya, Princess Rutendo, 2022. "The COVID-19 storm and the energy sector: The impact and role of uncertainty," Energy Economics, Elsevier, vol. 109(C).
  107. Lopes, Sílvia R.C. & Prass, Taiane S., 2014. "Theoretical results on fractionally integrated exponential generalized autoregressive conditional heteroskedastic processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 278-307.
  108. Ryoko Ito, 2016. "Asymptotic Theory for Beta-t-GARCH," Cambridge Working Papers in Economics 1607, Faculty of Economics, University of Cambridge.
  109. Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
  110. Todd Prono, 2016. "Closed-Form Estimation of Finite-Order ARCH Models: Asymptotic Theory and Finite-Sample Performance," Finance and Economics Discussion Series 2016-083, Board of Governors of the Federal Reserve System (U.S.).
  111. So, Mike K.P. & Chung, Ray S.W., 2015. "Statistical inference for conditional quantiles in nonlinear time series models," Journal of Econometrics, Elsevier, vol. 189(2), pages 457-472.
  112. Bal'azs Csan'ad Cs'aji, 2018. "Score Permutation Based Finite Sample Inference for Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) Models," Papers 1807.08390, arXiv.org.
  113. Manon Costa & Sébastien Gadat, 2021. "Non-asymptotic study of a recursive superquantile estimation algorithm," Post-Print hal-03610477, HAL.
  114. Martin Magris & Alexandros Iosifidis, 2023. "Variational Inference for GARCH-family Models," Papers 2310.03435, arXiv.org.
  115. Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.
  116. Setoudehtazangi, F. & Manouchehri, T. & Nematollahi, A.R. & Caporin, M., 2024. "Time series clustering based on latent volatility mixture modeling with applications in finance," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 543-564.
  117. Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2016. "Nonstationary GARCH with t-distributed innovations," Economics Letters, Elsevier, vol. 138(C), pages 19-21.
  118. Jürgen Franke & Peter Mwita & Weining Wang, 2015. "Nonparametric estimates for conditional quantiles of time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 107-130, January.
  119. Christian Francq & Jean-Michel Zakoïan, 2008. "A Tour in the Asymptotic Theory of GARCH Estimation," Working Papers 2008-03, Center for Research in Economics and Statistics.
  120. Francq, Christian & Zakoian, Jean-Michel, 2007. "Quasi-maximum likelihood estimation in GARCH processes when some coefficients are equal to zero," Stochastic Processes and their Applications, Elsevier, vol. 117(9), pages 1265-1284, September.
  121. Mo Zhou & Liang Peng & Rongmao Zhang, 2021. "Empirical likelihood test for the application of swqmele in fitting an arma‐garch model," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 222-239, March.
  122. Yannick Hoga, 2023. "The Estimation Risk in Extreme Systemic Risk Forecasts," Papers 2304.10349, arXiv.org.
  123. Liu, Shuangzhe & Neudecker, Heinz, 2009. "On pseudo maximum likelihood estimation for multivariate time series models with conditional heteroskedasticity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2556-2565.
  124. George C. Bitros, 2017. "Still in the Woods," Working Papers 201711, Athens University Of Economics and Business, Department of Economics.
  125. Yuanyuan Zhang & Rong Liu & Qin Shao & Lijian Yang, 2020. "Two‐Step Estimation for Time Varying Arch Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 551-570, July.
  126. Emma M. Iglesias & Garry D. A. Phillips, 2012. "Estimation, Testing, and Finite Sample Properties of Quasi-Maximum Likelihood Estimators in GARCH-M Models," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 532-557, September.
  127. Błażej Mazur & Mateusz Pipień, 2012. "On the Empirical Importance of Periodicity in the Volatility of Financial Returns - Time Varying GARCH as a Second Order APC(2) Process," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(2), pages 95-116, June.
  128. Dewitte, Ruben, 2020. "From Heavy-Tailed Micro to Macro: on the characterization of firm-level heterogeneity and its aggregation properties," MPRA Paper 103170, University Library of Munich, Germany.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.