IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20240008.html
   My bibliography  Save this paper

Bootstrapping GARCH Models Under Dependent Innovations

Author

Listed:
  • Eric Beutner

    (Vrije Universiteit Amsterdam)

  • Julia Schaumburg

    (Vrije Universiteit Amsterdam)

  • Barend Spanjers

    (Vrije Universiteit Amsterdam)

Abstract

This study reflects on the inconsistency of the fixed-design residual bootstrap procedure for GARCH models under dependent innovations. We introduce a novel recursive-design residual block bootstrap procedure to accurately quantify the uncertainty around parameter estimates and volatility forecasts. A simulation study provides evidence for the validity of the recursive-design residual block bootstrap in the presence of dependent innovations. The resulting bootstrap confidence intervals are not only valid but also potentially narrower than the ones obtained from the inconsistent fixed design bootstrap, depending on the underlying data-generating process and the sample size. In an application to financial time series, we illustrate the empirical relevance of our proposed methods, showing evidence for the residual dependence and demonstrating notable differences between the confidence intervals obtained by the fixed- and the recursive-design bootstrap procedure.

Suggested Citation

  • Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20240008
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/24008.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Beutner, Eric & Heinemann, Alexander & Smeekes, Stephan, 2024. "A residual bootstrap for conditional Value-at-Risk," Journal of Econometrics, Elsevier, vol. 238(2).
    2. Giuseppe Cavaliere & Rasmus Søndergaard Pedersen & Anders Rahbek, 2018. "The Fixed Volatility Bootstrap for a Class of Arch(q) Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 920-941, November.
    3. Hall, Peter & Yao, Qiwei, 2003. "Inference in ARCH and GARCH models with heavy-tailed errors," LSE Research Online Documents on Economics 5875, London School of Economics and Political Science, LSE Library.
    4. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    5. Eugene Kouassi & Patrice Soh Takam & Jean Marcelin Bosson Brou & Emile Herve Ndoumbe, 2017. "Pseudo maximum likelihood estimation of the univariate GARCH (2,2) and asymptotic normality under dependent innovations," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(23), pages 11558-11574, December.
    6. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    7. Francq, Christian & Zakoïan, Jean-Michel, 2015. "Risk-parameter estimation in volatility models," Journal of Econometrics, Elsevier, vol. 184(1), pages 158-173.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Enzo D’Innocenzo & André Lucas & Bernd Schwaab & Xin Zhang, 2024. "Modeling Extreme Events: Time-Varying Extreme Tail Shape," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 903-917, July.
    10. Escanciano, Juan Carlos, 2009. "Quasi-Maximum Likelihood Estimation Of Semi-Strong Garch Models," Econometric Theory, Cambridge University Press, vol. 25(2), pages 561-570, April.
    11. Jeong, Minsoo, 2017. "Residual-Based Garch Bootstrap And Second Order Asymptotic Refinement," Econometric Theory, Cambridge University Press, vol. 33(3), pages 779-790, June.
    12. Christian Francq & Jean-Michel Zakoïan, 2016. "Estimating multivariate volatility models equation by equation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 613-635, June.
    13. Chris Brooks, 2005. "Autoregressive Conditional Kurtosis," Journal of Financial Econometrics, Oxford University Press, vol. 3(3), pages 399-421.
    14. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(1), pages 29-52, March.
    15. Meitz, Mika & Saikkonen, Pentti, 2011. "Parameter Estimation In Nonlinear Ar–Garch Models," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1236-1278, December.
    16. Jondeau, Eric & Rockinger, Michael, 2003. "Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1699-1737, August.
    17. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    18. Linton, Oliver & Pan, Jiazhu & Wang, Hui, 2010. "Estimation For A Nonstationary Semi-Strong Garch(1,1) Model With Heavy-Tailed Errors," Econometric Theory, Cambridge University Press, vol. 26(1), pages 1-28, February.
    19. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
    20. Lijuan Huo & Jin Seo Cho, 2021. "Testing for the sandwich-form covariance matrix of the quasi-maximum likelihood estimator," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 293-317, June.
    21. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(4), pages 465-487, December.
    22. Anne Leucht & Jens-Peter Kreiss & Michael H. Neumann, 2015. "A Model Specification Test For GARCH(1,1) Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1167-1193, December.
    23. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-596, May.
    24. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(1), pages 107-131, April.
    25. Eugene Kouassi & Patrice Takam Soh & Jean Marcelin Bosson Brou & Emile Herve Ndoumbe, 2017. "Pseudo maximum-likelihood estimation of the univariate GARCH (1,1) and asymptotic properties," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(20), pages 10253-10271, October.
    26. Li, Shuo & Peng, Liuhua & Song, Xiaojun, 2023. "Simultaneous Confidence Bands For Conditional Value-At-Risk And Expected Shortfall," Econometric Theory, Cambridge University Press, vol. 39(5), pages 1009-1043, October.
    27. Peter Hall & Qiwei Yao, 2003. "Inference in Arch and Garch Models with Heavy--Tailed Errors," Econometrica, Econometric Society, vol. 71(1), pages 285-317, January.
    28. Corradi, Valentina & Iglesias, Emma M., 2008. "Bootstrap refinements for QML estimators of the GARCH(1,1) parameters," Journal of Econometrics, Elsevier, vol. 144(2), pages 500-510, June.
    29. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beutner, Eric & Heinemann, Alexander & Smeekes, Stephan, 2024. "A residual bootstrap for conditional Value-at-Risk," Journal of Econometrics, Elsevier, vol. 238(2).
    2. Luger, Richard, 2012. "Finite-sample bootstrap inference in GARCH models with heavy-tailed innovations," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3198-3211.
    3. Wang, Hui & Pan, Jiazhu, 2014. "Normal mixture quasi maximum likelihood estimation for non-stationary TGARCH(1,1) models," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 117-123.
    4. Meitz, Mika & Saikkonen, Pentti, 2011. "Parameter Estimation In Nonlinear Ar–Garch Models," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1236-1278, December.
    5. Todd Prono, 2016. "Closed-Form Estimation of Finite-Order ARCH Models: Asymptotic Theory and Finite-Sample Performance," Finance and Economics Discussion Series 2016-083, Board of Governors of the Federal Reserve System (U.S.).
    6. Giuseppe Cavaliere & Rasmus Søndergaard Pedersen & Anders Rahbek, 2018. "The Fixed Volatility Bootstrap for a Class of Arch(q) Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 920-941, November.
    7. Alexander Heinemann & Sean Telg, 2018. "A Residual Bootstrap for Conditional Expected Shortfall," Papers 1811.11557, arXiv.org.
    8. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    9. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    10. Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
    11. M. Jiménez Gamero, 2014. "On the empirical characteristic function process of the residuals in GARCH models and applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 409-432, June.
    12. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    13. Demos Antonis & Kyriakopoulou Dimitra, 2019. "Finite-Sample Theory and Bias Correction of Maximum Likelihood Estimators in the EGARCH Model," Journal of Time Series Econometrics, De Gruyter, vol. 11(1), pages 1-20, January.
    14. Todd, Prono, 2009. "Simple, Skewness-Based GMM Estimation of the Semi-Strong GARCH(1,1) Model," MPRA Paper 30994, University Library of Munich, Germany, revised 30 Jul 2011.
    15. Wang, Xuqin & Li, Muyi, 2023. "Bootstrapping the transformed goodness-of-fit test on heavy-tailed GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    16. Sylvia J. Soltyk & Felix Chan, 2023. "Modeling time‐varying higher‐order conditional moments: A survey," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 33-57, February.
    17. Cavaliere, Giuseppe & Nielsen, Heino Bohn & Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2022. "Bootstrap inference on the boundary of the parameter space, with application to conditional volatility models," Journal of Econometrics, Elsevier, vol. 227(1), pages 241-263.
    18. Alexander Heinemann, 2019. "A Bootstrap Test for the Existence of Moments for GARCH Processes," Papers 1902.01808, arXiv.org, revised Jul 2019.
    19. Meister, Alexander & Kreiß, Jens-Peter, 2016. "Statistical inference for nonparametric GARCH models," Stochastic Processes and their Applications, Elsevier, vol. 126(10), pages 3009-3040.
    20. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20240008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.