IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v161y2017icp135-137.html
   My bibliography  Save this article

Stable limits for the Gaussian QMLE in the non-stationary GARCH(1,1) model

Author

Listed:
  • Arvanitis, Stelios
  • Louka, Alexandros

Abstract

We derive the limit theory of the Gaussian QMLE in the non-stationary GARCH(1,1) model when the squared innovation process lies in the domain of attraction of a stable law. Analogously to the stationary case, when the stability parameter lies in 1,2, we find regularly varying rates and stable limits for the QMLE of the ARCH and GARCH parameters.

Suggested Citation

  • Arvanitis, Stelios & Louka, Alexandros, 2017. "Stable limits for the Gaussian QMLE in the non-stationary GARCH(1,1) model," Economics Letters, Elsevier, vol. 161(C), pages 135-137.
  • Handle: RePEc:eee:ecolet:v:161:y:2017:i:c:p:135-137
    DOI: 10.1016/j.econlet.2017.09.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176517304111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2017.09.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hall, Peter & Yao, Qiwei, 2003. "Inference in ARCH and GARCH models with heavy-tailed errors," LSE Research Online Documents on Economics 5875, London School of Economics and Political Science, LSE Library.
    2. Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2016. "Nonstationary GARCH with t-distributed innovations," Economics Letters, Elsevier, vol. 138(C), pages 19-21.
    3. Jensen, Søren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1203-1226, December.
    4. Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
    5. Søren Tolver Jensen & Anders Rahbek, 2004. "Asymptotic Normality of the QMLE Estimator of ARCH in the Nonstationary Case," Econometrica, Econometric Society, vol. 72(2), pages 641-646, March.
    6. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(3), pages 318-334, September.
    7. Peter Hall & Qiwei Yao, 2003. "Inference in Arch and Garch Models with Heavy--Tailed Errors," Econometrica, Econometric Society, vol. 71(1), pages 285-317, January.
    8. Christian Francq & Jean‐Michel Zakoïan, 2012. "Strict Stationarity Testing and Estimation of Explosive and Stationary Generalized Autoregressive Conditional Heteroscedasticity Models," Econometrica, Econometric Society, vol. 80(2), pages 821-861, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong, Yun & Li, Yi, 2020. "Housing prices and investor sentiment dynamics: Evidence from China using a wavelet approach," Finance Research Letters, Elsevier, vol. 35(C).
    2. Arvanitis, Stelios, 2019. "Stable limit theory for the Gaussian QMLE in a non-stationary asymmetric GARCH model," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 166-172.
    3. Stelios Arvanitis & Sofia Anyfantaki, 2020. "On the limit theory of the Gaussian SQMLE in the EGARCH(1,1) model," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 341-350, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Dong & Ling, Shiqing & Zhu, Ke, 2016. "ZD-GARCH model: a new way to study heteroscedasticity," MPRA Paper 68621, University Library of Munich, Germany.
    2. Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2016. "Nonstationary GARCH with t-distributed innovations," Economics Letters, Elsevier, vol. 138(C), pages 19-21.
    3. Li, Dong & Zhang, Xingfa & Zhu, Ke & Ling, Shiqing, 2018. "The ZD-GARCH model: A new way to study heteroscedasticity," Journal of Econometrics, Elsevier, vol. 202(1), pages 1-17.
    4. Li, Dong & Li, Muyi & Wu, Wuqing, 2014. "On dynamics of volatilities in nonstationary GARCH models," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 86-90.
    5. Stelios Arvanitis, 2017. "Non-Emptyness of Stochastic Dominance Effiicient Sets via Stochastic Spanning," Working Papers 201710, Athens University Of Economics and Business, Department of Economics.
    6. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    7. Wang, Hui & Pan, Jiazhu, 2014. "Normal mixture quasi maximum likelihood estimation for non-stationary TGARCH(1,1) models," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 117-123.
    8. Natasha Miaouli & Panagiota Koliousi, 2018. "Efficient bargaining versus Right to manage in the era of liberalization," Working Papers 201804, Athens University Of Economics and Business, Department of Economics.
    9. Helen Caraveli & Ioannis Chatzigiatroudakis & Evangelos Paravalos, 2018. "Determinants of growth differences between Eastern and Southern EU countries: A panel-data approach," Working Papers 201803, Athens University Of Economics and Business, Department of Economics.
    10. Bitros, George C. & Nadiri, M. Ishaq, 2017. "Behavior of business investment in the USA under variable and proportional rates of replacement," MPRA Paper 80594, University Library of Munich, Germany.
    11. Stylianos G. Gogos & Dimitris Papageorgiou & Vanghelis Vassilatos, 2017. "Rent Seeking Activities and Aggregate Economic Performance - The Case of Greece," Working Papers 201712, Athens University Of Economics and Business, Department of Economics.
    12. Bertsatos, Georgios & Sakellaris, Plutarchos & Tsionas, Mike G., 2017. "Did the financial crisis affect the market valuation of large systemic U.S. banks?," Journal of Financial Stability, Elsevier, vol. 32(C), pages 115-123.
    13. George C. Bitros, 2017. "Still in the Woods," Working Papers 201711, Athens University Of Economics and Business, Department of Economics.
    14. Ryoko Ito, 2016. "Asymptotic Theory for Beta-t-GARCH," Cambridge Working Papers in Economics 1607, Faculty of Economics, University of Cambridge.
    15. Luger, Richard, 2012. "Finite-sample bootstrap inference in GARCH models with heavy-tailed innovations," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3198-3211.
    16. Rasmus Søndergaard Pedersen & Anders Rahbek, 2015. "Nonstationary ARCH and GARCH with t-distributed Innovations," CREATES Research Papers 2015-27, Department of Economics and Business Economics, Aarhus University.
    17. George C. Bitros, 2017. "Germany and Greece: A mapping of their great divide and its EU implications," Working Papers 201706, Athens University Of Economics and Business, Department of Economics.
    18. Conrad, Christian & Mammen, Enno, 2016. "Asymptotics for parametric GARCH-in-Mean models," Journal of Econometrics, Elsevier, vol. 194(2), pages 319-329.
    19. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, October.
    20. Aguilar, Mike & Hill, Jonathan B., 2015. "Robust score and portmanteau tests of volatility spillover," Journal of Econometrics, Elsevier, vol. 184(1), pages 37-61.

    More about this item

    Keywords

    Martingale limit theorem; Domain of attraction; Stable distribution; Slowly varying sequence; Non-Stationarity; Gaussian QMLE; Regularly varying rate;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:161:y:2017:i:c:p:135-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.