IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v91y2014icp117-123.html
   My bibliography  Save this article

Normal mixture quasi maximum likelihood estimation for non-stationary TGARCH(1,1) models

Author

Listed:
  • Wang, Hui
  • Pan, Jiazhu

Abstract

Although quasi maximum likelihood estimator based on Gaussian density (G-QMLE) is widely used to estimate GARCH-type models, it does not perform successfully when error distribution is either skewed or leptokurtic. This paper proposes normal mixture quasi-maximum likelihood estimator (NM-QMLE) for non-stationary TGARCH(1,1) models. We show that, under mild regular conditions, there is no consistent estimator for the intercept, and the proposed estimator for any other parameter is consistent.

Suggested Citation

  • Wang, Hui & Pan, Jiazhu, 2014. "Normal mixture quasi maximum likelihood estimation for non-stationary TGARCH(1,1) models," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 117-123.
  • Handle: RePEc:eee:stapro:v:91:y:2014:i:c:p:117-123
    DOI: 10.1016/j.spl.2014.03.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715214001205
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2014.03.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jensen, Søren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1203-1226, December.
    2. Zhiqiang Zhang & Wai Keung Li & Kam Chuen Yuen, 2006. "On a Mixture GARCH Time‐Series Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(4), pages 577-597, July.
    3. Pan, Jiazhu & Wang, Hui & Tong, Howell, 2008. "Estimation and tests for power-transformed and threshold GARCH models," Journal of Econometrics, Elsevier, vol. 142(1), pages 352-378, January.
    4. Li, C W & Li, W K, 1996. "On a Double-Threshold Autoregressive Heteroscedastic Time Series Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(3), pages 253-274, May-June.
    5. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    8. Taewook Lee & Sangyeol Lee, 2009. "Normal Mixture Quasi‐maximum Likelihood Estimator for GARCH Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 157-170, March.
    9. Hall, Peter & Yao, Qiwei, 2003. "Inference in ARCH and GARCH models with heavy-tailed errors," LSE Research Online Documents on Economics 5875, London School of Economics and Political Science, LSE Library.
    10. Hwang, S. Y. & Basawa, I. V., 2004. "Stationarity and moment structure for Box-Cox transformed threshold GARCH(1,1) processes," Statistics & Probability Letters, Elsevier, vol. 68(3), pages 209-220, July.
    11. Hwang, S.Y. & Baek, J.S. & Park, J.A. & Choi, M.S., 2010. "Explosive volatilities for threshold-GARCH processes generated by asymmetric innovations," Statistics & Probability Letters, Elsevier, vol. 80(1), pages 26-33, January.
    12. Francq, Christian & Zakoian, Jean-Michel, 2013. "Inference in non stationary asymmetric garch models," MPRA Paper 44901, University Library of Munich, Germany.
    13. Hwang, S. Y. & Kim, Tae Yoon, 2004. "Power transformation and threshold modeling for ARCH innovations with applications to tests for ARCH structure," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 295-314, April.
    14. Peter Hall & Qiwei Yao, 2003. "Inference in Arch and Garch Models with Heavy--Tailed Errors," Econometrica, Econometric Society, vol. 71(1), pages 285-317, January.
    15. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    16. Vlaar, Peter J G & Palm, Franz C, 1993. "The Message in Weekly Exchange Rates in the European Monetary System: Mean Reversion, Conditional Heteroscedasticity, and Jumps," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 351-360, July.
    17. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, vol. 1(2), pages 211-248, January.
    18. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(1), pages 29-52, March.
    19. Catalin Starica & Stefano Herzel & Tomas Nord, 2005. "Why does the GARCH(1,1) model fail to provide sensible longer- horizon volatility forecasts?," Econometrics 0508003, University Library of Munich, Germany.
    20. Linton, Oliver & Pan, Jiazhu & Wang, Hui, 2010. "Estimation For A Nonstationary Semi-Strong Garch(1,1) Model With Heavy-Tailed Errors," Econometric Theory, Cambridge University Press, vol. 26(1), pages 1-28, February.
    21. Søren Tolver Jensen & Anders Rahbek, 2004. "Asymptotic Normality of the QMLE Estimator of ARCH in the Nonstationary Case," Econometrica, Econometric Society, vol. 72(2), pages 641-646, March.
    22. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-596, May.
    23. Christian Francq & Jean‐Michel Zakoïan, 2012. "Strict Stationarity Testing and Estimation of Explosive and Stationary Generalized Autoregressive Conditional Heteroscedasticity Models," Econometrica, Econometric Society, vol. 80(2), pages 821-861, March.
    24. Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 211-250.
    25. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bibi, Abdelouahab & Ghezal, Ahmed, 2017. "Asymptotic properties of QMLE for periodic asymmetric strong and semi-strong GARCH models," MPRA Paper 81126, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Guochang & Zhu, Ke & Li, Guodong & Li, Wai Keung, 2022. "Hybrid quantile estimation for asymmetric power GARCH models," Journal of Econometrics, Elsevier, vol. 227(1), pages 264-284.
    2. Guochang Wang & Ke Zhu & Guodong Li & Wai Keung Li, 2019. "Hybrid quantile estimation for asymmetric power GARCH models," Papers 1911.09343, arXiv.org.
    3. Li, Dong & Li, Muyi & Wu, Wuqing, 2014. "On dynamics of volatilities in nonstationary GARCH models," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 86-90.
    4. Taewook Lee & Sangyeol Lee, 2009. "Normal Mixture Quasi‐maximum Likelihood Estimator for GARCH Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 157-170, March.
    5. Luger, Richard, 2012. "Finite-sample bootstrap inference in GARCH models with heavy-tailed innovations," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3198-3211.
    6. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    7. Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2016. "Nonstationary GARCH with t-distributed innovations," Economics Letters, Elsevier, vol. 138(C), pages 19-21.
    8. Li, Dong & Zhang, Xingfa & Zhu, Ke & Ling, Shiqing, 2018. "The ZD-GARCH model: A new way to study heteroscedasticity," Journal of Econometrics, Elsevier, vol. 202(1), pages 1-17.
    9. Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
    10. Li, Dong & Ling, Shiqing & Zhu, Ke, 2016. "ZD-GARCH model: a new way to study heteroscedasticity," MPRA Paper 68621, University Library of Munich, Germany.
    11. Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.
    12. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    13. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    14. Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
    15. Bekaert, Geert & Engstrom, Eric & Ermolov, Andrey, 2015. "Bad environments, good environments: A non-Gaussian asymmetric volatility model," Journal of Econometrics, Elsevier, vol. 186(1), pages 258-275.
    16. F Blasques & P Gorgi & S J Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models ," Working Papers hal-01377971, HAL.
    17. Bibi, Abdelouahab & Ghezal, Ahmed, 2017. "Asymptotic properties of QMLE for periodic asymmetric strong and semi-strong GARCH models," MPRA Paper 81126, University Library of Munich, Germany.
    18. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024.
    19. F Blasques & P Gorgi & S Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models," Papers 1610.02863, arXiv.org.
    20. Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2016. "Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models," Tinbergen Institute Discussion Papers 16-082/III, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:91:y:2014:i:c:p:117-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.