IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v41y2014i4p866-892.html
   My bibliography  Save this article

Asymptotic Behavior of Conditional Least Squares Estimators for Unstable Integer-valued Autoregressive Models of Order 2

Author

Listed:
  • Mátyás Barczy
  • Márton Ispány
  • Gyula Pap

Abstract

type="main" xml:id="sjos12069-abs-0001"> In this paper, the asymptotic behavior of the conditional least squares estimators of the autoregressive parameters, of the mean of the innovations, and of the stability parameter for unstable integer-valued autoregressive processes of order 2 is described. The limit distributions and the scaling factors are different according to the following three cases: (i) decomposable, (ii) indecomposable but not positively regular, and (iii) positively regular models.

Suggested Citation

  • Mátyás Barczy & Márton Ispány & Gyula Pap, 2014. "Asymptotic Behavior of Conditional Least Squares Estimators for Unstable Integer-valued Autoregressive Models of Order 2," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 866-892, December.
  • Handle: RePEc:bla:scjsta:v:41:y:2014:i:4:p:866-892
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12069
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hall, Peter & Yao, Qiwei, 2003. "Inference in ARCH and GARCH models with heavy-tailed errors," LSE Research Online Documents on Economics 5875, London School of Economics and Political Science, LSE Library.
    2. Feike C. Drost & Ramon Van Den Akker & Bas J. M. Werker, 2008. "Local asymptotic normality and efficient estimation for INAR(p) models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 783-801, September.
    3. Christian Weiß, 2008. "Thinning operations for modeling time series of counts—a survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(3), pages 319-341, August.
    4. repec:tiu:tiutis:6b90fe6f-4de9-4192-9f4d-99ae9220af75 is not listed on IDEAS
    5. Drost, F.C. & van den Akker, R. & Werker, B.J.M., 2009. "The asymptotic structure of nearly unstable non negative integer-valued AR(1) models," Other publications TiSEM ac0494ae-7a32-43ca-b5b4-d, Tilburg University, School of Economics and Management.
    6. Barczy, M. & Ispány, M. & Pap, G., 2011. "Asymptotic behavior of unstable INAR(p) processes," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 583-608, March.
    7. Peter Hall & Qiwei Yao, 2003. "Inference in Arch and Garch Models with Heavy--Tailed Errors," Econometrica, Econometric Society, vol. 71(1), pages 285-317, January.
    8. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mátyás Barczy & Zenghu Li & Gyula Pap, 2016. "Moment Formulas for Multitype Continuous State and Continuous Time Branching Process with Immigration," Journal of Theoretical Probability, Springer, vol. 29(3), pages 958-995, September.
    2. Mátyás Barczy & Kristóf Körmendi & Gyula Pap, 2016. "Statistical inference for critical continuous state and continuous time branching processes with immigration," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(7), pages 789-816, October.
    3. Kristóf Körmendi & Gyula Pap, 2018. "Statistical inference of 2-type critical Galton–Watson processes with immigration," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 169-190, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davidson, Russell & Flachaire, Emmanuel, 2007. "Asymptotic and bootstrap inference for inequality and poverty measures," Journal of Econometrics, Elsevier, vol. 141(1), pages 141-166, November.
    2. Ngozi G. Emenogu & Monday Osagie Adenomon & Nwaze Obini Nweze, 2020. "On the volatility of daily stock returns of Total Nigeria Plc: evidence from GARCH models, value-at-risk and backtesting," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-25, December.
    3. Conrad, Christian & Mammen, Enno, 2016. "Asymptotics for parametric GARCH-in-Mean models," Journal of Econometrics, Elsevier, vol. 194(2), pages 319-329.
    4. Javed Farrukh & Podgórski Krzysztof, 2017. "Tail Behavior and Dependence Structure in the APARCH Model," Journal of Time Series Econometrics, De Gruyter, vol. 9(2), pages 1-48, July.
    5. Oliver Linton & Dajing Shang & Yang Yan, 2012. "Efficient estimation of conditional risk measures in a semiparametric GARCH model," CeMMAP working papers 25/12, Institute for Fiscal Studies.
    6. Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.
    7. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    8. Stelios Arvanitis, 2017. "Non-Emptyness of Stochastic Dominance Effiicient Sets via Stochastic Spanning," Working Papers 201710, Athens University Of Economics and Business, Department of Economics.
    9. Ha, Jeongcheol & Lee, Taewook, 2011. "NM-QELE for ARMA-GARCH models with non-Gaussian innovations," Statistics & Probability Letters, Elsevier, vol. 81(6), pages 694-703, June.
    10. Preminger, Arie & Storti, Giuseppe, 2014. "Least squares estimation for GARCH (1,1) model with heavy tailed errors," MPRA Paper 59082, University Library of Munich, Germany.
    11. Jürgen Franke & Peter Mwita & Weining Wang, 2015. "Nonparametric estimates for conditional quantiles of time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 107-130, January.
    12. M. Jiménez Gamero, 2014. "On the empirical characteristic function process of the residuals in GARCH models and applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 409-432, June.
    13. Cowell, Frank A. & Flachaire, Emmanuel, 2007. "Income distribution and inequality measurement: The problem of extreme values," Journal of Econometrics, Elsevier, vol. 141(2), pages 1044-1072, December.
    14. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, October.
    15. Francq, Christian & Zakoïan, Jean-Michel, 2009. "Testing the Nullity of GARCH Coefficients: Correction of the Standard Tests and Relative Efficiency Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 313-324.
    16. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    17. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2021. "Bayesian estimation for a semiparametric nonlinear volatility model," Economic Modelling, Elsevier, vol. 98(C), pages 361-370.
    18. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    19. Bali, Rakesh & Guirguis, Hany, 2007. "Extreme observations and non-normality in ARCH and GARCH," International Review of Economics & Finance, Elsevier, vol. 16(3), pages 332-346.
    20. Wang, Hui & Pan, Jiazhu, 2014. "Normal mixture quasi maximum likelihood estimation for non-stationary TGARCH(1,1) models," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 117-123.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:41:y:2014:i:4:p:866-892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.