IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v39y2018i6p920-941.html
   My bibliography  Save this article

The Fixed Volatility Bootstrap for a Class of Arch(q) Models

Author

Listed:
  • Giuseppe Cavaliere
  • Rasmus Søndergaard Pedersen
  • Anders Rahbek

Abstract

The ‘fixed regressor’ – or ‘fixed design’ – bootstrap is usually considered in the context of classic regression, or conditional mean (autoregressive) models, see for example, Gonçalves and Kilian, 2004). We consider here inference for a general class of (non)linear ARCH models of order q, based on a ‘Fixed Volatility’ bootstrap. In the Fixed Volatility bootstrap, the lagged variables in the conditional variance equation are kept fixed at their values in the original series, while the bootstrap innovations are, as is standard, resampled with replacement from the estimated residuals based on quasi maximum likelihood estimation. We derive a full asymptotic theory to establish validity for the Fixed Volatility bootstrap applied to Wald statistics for general restrictions on the parameters. A key feature of the Fixed Volatility bootstrap is that the bootstrap sample, conditional on the original data, is an independent sequence. Inspection of the proof of bootstrap validity reveals that such conditional independence simplifies the asymptotic analysis considerably. In contrast to other bootstrap methods, one does not have to take into account the conditional dependence structure of the bootstrap process itself. We also investigate the finite sample performance of the Fixed Volatility bootstrap by means of a small scale Monte Carlo experiment. We find evidence that for small sample sizes, the Fixed Volatility bootstrap test is superior to the asymptotic test, and to the recursive bootstrap‐based test. For large samples, both bootstrap schemes and the asymptotic test share properties, as expected from the asymptotic theory. Its appealing theoretical properties, together with its good finite sample performance, suggest that the proposed Fixed Volatility bootstrap may be an important tool for the analysis of the bootstrap in more general volatility models.

Suggested Citation

  • Giuseppe Cavaliere & Rasmus Søndergaard Pedersen & Anders Rahbek, 2018. "The Fixed Volatility Bootstrap for a Class of Arch(q) Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 920-941, November.
  • Handle: RePEc:bla:jtsera:v:39:y:2018:i:6:p:920-941
    DOI: 10.1111/jtsa.12421
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12421
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12421?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dovonon, Prosper & Gonçalves, Sílvia, 2017. "Bootstrapping the GMM overidentification test under first-order underidentification," Journal of Econometrics, Elsevier, vol. 201(1), pages 43-71.
    2. Jeong, Minsoo, 2017. "Residual-Based Garch Bootstrap And Second Order Asymptotic Refinement," Econometric Theory, Cambridge University Press, vol. 33(3), pages 779-790, June.
    3. Giuseppe Cavaliere & Heino Bohn Nielsen & Anders Rahbek, 2015. "Bootstrap Testing of Hypotheses on Co‐Integration Relations in Vector Autoregressive Models," Econometrica, Econometric Society, vol. 83, pages 813-831, March.
    4. Giuseppe Cavaliere & Heino Bohn Nielsen & Anders Rahbek, 2017. "On the Consistency of Bootstrap Testing for a Parameter on the Boundary of the Parameter Space," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(4), pages 513-534, July.
    5. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    6. Kristensen, Dennis & Rahbek, Anders, 2005. "ASYMPTOTICS OF THE QMLE FOR A CLASS OF ARCH(q) MODELS," Econometric Theory, Cambridge University Press, vol. 21(5), pages 946-961, October.
    7. Hall, Peter & Yao, Qiwei, 2003. "Inference in ARCH and GARCH models with heavy-tailed errors," LSE Research Online Documents on Economics 5875, London School of Economics and Political Science, LSE Library.
    8. Silvia Goncalves & Lutz Kilian, 2007. "Asymptotic and Bootstrap Inference for AR(∞) Processes with Conditional Heteroskedasticity," Econometric Reviews, Taylor & Francis Journals, vol. 26(6), pages 609-641.
    9. Peter Hall & Qiwei Yao, 2003. "Inference in Arch and Garch Models with Heavy--Tailed Errors," Econometrica, Econometric Society, vol. 71(1), pages 285-317, January.
    10. Corradi, Valentina & Iglesias, Emma M., 2008. "Bootstrap refinements for QML estimators of the GARCH(1,1) parameters," Journal of Econometrics, Elsevier, vol. 144(2), pages 500-510, June.
    11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    12. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
    13. Søren Tolver Jensen & Anders Rahbek, 2004. "Asymptotic Normality of the QMLE Estimator of ARCH in the Nonstationary Case," Econometrica, Econometric Society, vol. 72(2), pages 641-646, March.
    14. Christian Francq & Lajos Horváth & Jean-Michel Zakoïan, 2016. "Variance Targeting Estimation of Multivariate GARCH Models," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 353-382.
    15. Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2016. "Nonstationary GARCH with t-distributed innovations," Economics Letters, Elsevier, vol. 138(C), pages 19-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Heinemann, 2019. "A Bootstrap Test for the Existence of Moments for GARCH Processes," Papers 1902.01808, arXiv.org, revised Jul 2019.
    2. Wang, Xuqin & Li, Muyi, 2023. "Bootstrapping the transformed goodness-of-fit test on heavy-tailed GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    3. Alexander Heinemann & Sean Telg, 2018. "A Residual Bootstrap for Conditional Expected Shortfall," Papers 1811.11557, arXiv.org.
    4. Beutner, Eric & Heinemann, Alexander & Smeekes, Stephan, 2024. "A residual bootstrap for conditional Value-at-Risk," Journal of Econometrics, Elsevier, vol. 238(2).
    5. Lütkepohl, Helmut & Schlaak, Thore, 2019. "Bootstrapping impulse responses of structural vector autoregressive models identified through GARCH," Journal of Economic Dynamics and Control, Elsevier, vol. 101(C), pages 41-61.
    6. Cavaliere, Giuseppe & Nielsen, Heino Bohn & Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2022. "Bootstrap inference on the boundary of the parameter space, with application to conditional volatility models," Journal of Econometrics, Elsevier, vol. 227(1), pages 241-263.
    7. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    8. Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beutner, Eric & Heinemann, Alexander & Smeekes, Stephan, 2024. "A residual bootstrap for conditional Value-at-Risk," Journal of Econometrics, Elsevier, vol. 238(2).
    2. Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.
    3. Cavaliere, Giuseppe & Nielsen, Heino Bohn & Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2022. "Bootstrap inference on the boundary of the parameter space, with application to conditional volatility models," Journal of Econometrics, Elsevier, vol. 227(1), pages 241-263.
    4. Todd Prono, 2016. "Closed-Form Estimation of Finite-Order ARCH Models: Asymptotic Theory and Finite-Sample Performance," Finance and Economics Discussion Series 2016-083, Board of Governors of the Federal Reserve System (U.S.).
    5. M. Jiménez Gamero, 2014. "On the empirical characteristic function process of the residuals in GARCH models and applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 409-432, June.
    6. Wang, Hui & Pan, Jiazhu, 2014. "Normal mixture quasi maximum likelihood estimation for non-stationary TGARCH(1,1) models," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 117-123.
    7. Wang, Xuqin & Li, Muyi, 2023. "Bootstrapping the transformed goodness-of-fit test on heavy-tailed GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    8. Giuseppe Cavaliere & Heino Bohn Nielsen & Anders Rahbek, 2017. "On the Consistency of Bootstrap Testing for a Parameter on the Boundary of the Parameter Space," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(4), pages 513-534, July.
    9. Li, Dong & Li, Muyi & Wu, Wuqing, 2014. "On dynamics of volatilities in nonstationary GARCH models," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 86-90.
    10. Ryoko Ito, 2016. "Asymptotic Theory for Beta-t-GARCH," Cambridge Working Papers in Economics 1607, Faculty of Economics, University of Cambridge.
    11. Alexander Heinemann & Sean Telg, 2018. "A Residual Bootstrap for Conditional Expected Shortfall," Papers 1811.11557, arXiv.org.
    12. Li, Dong & Ling, Shiqing & Zhu, Ke, 2016. "ZD-GARCH model: a new way to study heteroscedasticity," MPRA Paper 68621, University Library of Munich, Germany.
    13. Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2016. "Nonstationary GARCH with t-distributed innovations," Economics Letters, Elsevier, vol. 138(C), pages 19-21.
    14. João Henrique G. Mazzeu & Gloria González-Rivera & Esther Ruiz & Helena Veiga, 2020. "A bootstrap approach for generalized Autocontour testing Implications for VIX forecast densities," Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 971-990, November.
    15. Luger, Richard, 2012. "Finite-sample bootstrap inference in GARCH models with heavy-tailed innovations," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3198-3211.
    16. Nazim Regnard & Jean‐Michel Zakoïan, 2010. "Structure and estimation of a class of nonstationary yet nonexplosive GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 348-364, September.
    17. Spierdijk, Laura, 2016. "Confidence intervals for ARMA–GARCH Value-at-Risk: The case of heavy tails and skewness," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 545-559.
    18. Shimizu Kenichi, 2013. "The bootstrap does not alwayswork for heteroscedasticmodels," Statistics & Risk Modeling, De Gruyter, vol. 30(3), pages 189-204, August.
    19. Kristensen Dennis & Rahbek Anders, 2009. "Asymptotics of the QMLE for Non-Linear ARCH Models," Journal of Time Series Econometrics, De Gruyter, vol. 1(1), pages 1-38, April.
    20. Arvanitis, Stelios & Louka, Alexandros, 2017. "Stable limits for the Gaussian QMLE in the non-stationary GARCH(1,1) model," Economics Letters, Elsevier, vol. 161(C), pages 135-137.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:39:y:2018:i:6:p:920-941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.