IDEAS home Printed from https://ideas.repec.org/p/kud/kuiedp/1810.html
   My bibliography  Save this paper

Bootstrap Inference On The Boundary Of The Parameter Space With Application To Conditional Volatility Models

Author

Listed:
  • Giuseppe Cavaliere

    (Department of Economics, University of Bologna, Italy)

  • Heino Bohn Nielsen

    (Department of Economics, University of Copenhagen, Denmark)

  • Rasmus Søndergaard Pedersen

    (Department of Economics, University of Copenhagen, Denmark)

  • Anders Rahbek

    (Department of Economics, University of Copenhagen, Denmark)

Abstract

It is a well-established fact that testing a null hypothesis on the boundary of the parameter space, with an unknown number of nuisance parameters at the boundary, is infeasible in practice in the sense that limiting distributions of standard test statistics are non-pivotal. In particular, likelihood ratio statistics have limiting distributions which can be characterized in terms of quadratic forms minimized over cones, where the shape of the cones depends on the unknown location of the (possibly mulitiple) model parameters not restricted by the null hypothesis. We propose to solve this inference problem by a novel bootstrap, which we show to be valid under general conditions, irrespective of the presence of (unknown) nuisance parameters on the boundary. That is, the new bootstrap replicates the unknown limiting distribution of the likelihood ratio statistic under the null hypothesis and is bounded (in probability) under the alternative. The new bootstrap approach, which is very simple to implement, is based on shrinkage of the parameter estimates used to generate the bootstrap sample toward the boundary of the parameter space at an appropriate rate. As an application of our general theory, we treat the problem of inference in ?nite-order ARCH models with coefficients subject to inequality constraints. Extensive Monte Carlo simulations illustrate that the proposed bootstrap has attractive ?nite sample properties both under the null and under the alternative hypothesis.

Suggested Citation

  • Giuseppe Cavaliere & Heino Bohn Nielsen & Rasmus Søndergaard Pedersen & Anders Rahbek, 2018. "Bootstrap Inference On The Boundary Of The Parameter Space With Application To Conditional Volatility Models," Discussion Papers 18-10, University of Copenhagen. Department of Economics.
  • Handle: RePEc:kud:kuiedp:1810
    as

    Download full text from publisher

    File URL: http://www.economics.ku.dk/research/publications/wp/dp_2018/papers/1810.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Beutner, Eric & Heinemann, Alexander & Smeekes, Stephan, 2024. "A residual bootstrap for conditional Value-at-Risk," Journal of Econometrics, Elsevier, vol. 238(2).
    2. Francq, Christian & Zakoïan, Jean-Michel, 2009. "Testing the Nullity of GARCH Coefficients: Correction of the Standard Tests and Relative Efficiency Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 313-324.
    3. Ketz, Philipp, 2018. "Subvector inference when the true parameter vector may be near or at the boundary," Journal of Econometrics, Elsevier, vol. 207(2), pages 285-306.
    4. Graham Elliott & Ulrich K. Müller & Mark W. Watson, 2015. "Nearly Optimal Tests When a Nuisance Parameter Is Present Under the Null Hypothesis," Econometrica, Econometric Society, vol. 83, pages 771-811, March.
    5. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    6. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    7. Donald W. K. Andrews, 2000. "Inconsistency of the Bootstrap when a Parameter Is on the Boundary of the Parameter Space," Econometrica, Econometric Society, vol. 68(2), pages 399-406, March.
    8. Jensen, Søren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1203-1226, December.
    9. Jeong, Minsoo, 2017. "Residual-Based Garch Bootstrap And Second Order Asymptotic Refinement," Econometric Theory, Cambridge University Press, vol. 33(3), pages 779-790, June.
    10. McCloskey, Adam, 2017. "Bonferroni-based size-correction for nonstandard testing problems," Journal of Econometrics, Elsevier, vol. 200(1), pages 17-35.
    11. Demos, Antonis & Sentana, Enrique, 1998. "Testing for GARCH effects: a one-sided approach," Journal of Econometrics, Elsevier, vol. 86(1), pages 97-127, June.
    12. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(1), pages 70-86, February.
    13. Francq, Christian & Zakoïan, Jean-Michel, 2012. "Qml Estimation Of A Class Of Multivariate Asymmetric Garch Models," Econometric Theory, Cambridge University Press, vol. 28(1), pages 179-206, February.
    14. Giuseppe Cavaliere & Heino Bohn Nielsen & Anders Rahbek, 2015. "Bootstrap Testing of Hypotheses on Co‐Integration Relations in Vector Autoregressive Models," Econometrica, Econometric Society, vol. 83, pages 813-831, March.
    15. Pedersen, Rasmus Søndergaard, 2017. "Inference and testing on the boundary in extended constant conditional correlation GARCH models," Journal of Econometrics, Elsevier, vol. 196(1), pages 23-36.
    16. Giuseppe Cavaliere & Heino Bohn Nielsen & Anders Rahbek, 2017. "On the Consistency of Bootstrap Testing for a Parameter on the Boundary of the Parameter Space," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(4), pages 513-534, July.
    17. Victor Chernozhukov & Han Hong & Elie Tamer, 2007. "Estimation and Confidence Regions for Parameter Sets in Econometric Models," Econometrica, Econometric Society, vol. 75(5), pages 1243-1284, September.
    18. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    19. Rudolf Beran, 1997. "Diagnosing Bootstrap Success," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(1), pages 1-24, March.
    20. Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2019. "Testing Garch-X Type Models," Econometric Theory, Cambridge University Press, vol. 35(5), pages 1012-1047, October.
    21. Giuseppe Cavaliere & Rasmus Søndergaard Pedersen & Anders Rahbek, 2018. "The Fixed Volatility Bootstrap for a Class of Arch(q) Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 920-941, November.
    22. Hall, Peter & Yao, Qiwei, 2003. "Inference in ARCH and GARCH models with heavy-tailed errors," LSE Research Online Documents on Economics 5875, London School of Economics and Political Science, LSE Library.
    23. Agosto, Arianna & Cavaliere, Giuseppe & Kristensen, Dennis & Rahbek, Anders, 2016. "Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX)," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 640-663.
    24. Donald W. K. Andrews, 1999. "Estimation When a Parameter Is on a Boundary," Econometrica, Econometric Society, vol. 67(6), pages 1341-1384, November.
    25. Davidson, Russell & MacKinnon, James G., 2006. "The power of bootstrap and asymptotic tests," Journal of Econometrics, Elsevier, vol. 133(2), pages 421-441, August.
    26. Donald W. K. Andrews & Moshe Buchinsky, 2000. "A Three-Step Method for Choosing the Number of Bootstrap Repetitions," Econometrica, Econometric Society, vol. 68(1), pages 23-52, January.
    27. Francq, Christian & Zakoian, Jean-Michel, 2007. "Quasi-maximum likelihood estimation in GARCH processes when some coefficients are equal to zero," Stochastic Processes and their Applications, Elsevier, vol. 117(9), pages 1265-1284, September.
    28. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    29. Zeng-Hua Lu, 2016. "Extended MaxT Tests of One-Sided Hypotheses," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 423-437, March.
    30. Peter Hall & Qiwei Yao, 2003. "Inference in Arch and Garch Models with Heavy--Tailed Errors," Econometrica, Econometric Society, vol. 71(1), pages 285-317, January.
    31. Corradi, Valentina & Iglesias, Emma M., 2008. "Bootstrap refinements for QML estimators of the GARCH(1,1) parameters," Journal of Econometrics, Elsevier, vol. 144(2), pages 500-510, June.
    32. Donald W. K. Andrews & Patrik Guggenberger, 2009. "Hybrid and Size-Corrected Subsampling Methods," Econometrica, Econometric Society, vol. 77(3), pages 721-762, May.
    33. Giuseppe Cavaliere & Anders Rahbek & A. M. Robert Taylor, 2012. "Bootstrap Determination of the Co‐Integration Rank in Vector Autoregressive Models," Econometrica, Econometric Society, vol. 80(4), pages 1721-1740, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beutner, Eric & Heinemann, Alexander & Smeekes, Stephan, 2024. "A residual bootstrap for conditional Value-at-Risk," Journal of Econometrics, Elsevier, vol. 238(2).
    2. Xuanling Yang & Dong Li, 2022. "Estimation of the empirical risk‐return relation: A generalized‐risk‐in‐mean model," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 938-963, November.
    3. Francq, Christian & Zakoïan, Jean-Michel, 2022. "Testing the existence of moments for GARCH processes," Journal of Econometrics, Elsevier, vol. 227(1), pages 47-64.
    4. Gregory Fletcher Cox, 2024. "A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality," Papers 2409.09962, arXiv.org.
    5. Giuseppe Cavaliere & Anders Rahbek, 2019. "A Primer On Bootstrap Testing Of Hypotheses In Time Series Models: With An Application To Double Autoregressive Models," Discussion Papers 19-03, University of Copenhagen. Department of Economics.
    6. Alexander Heinemann, 2019. "A Bootstrap Test for the Existence of Moments for GARCH Processes," Papers 1902.01808, arXiv.org, revised Jul 2019.
    7. Heino Bohn Nielsen & Anders Rahbek, 2023. "Penalized Quasi-likelihood Estimation and Model Selection in Time Series Models with Parameters on the Boundary," Papers 2302.02867, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory Fletcher Cox, 2024. "A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality," Papers 2409.09962, arXiv.org.
    2. Pedersen, Rasmus Søndergaard, 2017. "Inference and testing on the boundary in extended constant conditional correlation GARCH models," Journal of Econometrics, Elsevier, vol. 196(1), pages 23-36.
    3. Jiang, Feiyu & Li, Dong & Zhu, Ke, 2020. "Non-standard inference for augmented double autoregressive models with null volatility coefficients," Journal of Econometrics, Elsevier, vol. 215(1), pages 165-183.
    4. Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2019. "Testing Garch-X Type Models," Econometric Theory, Cambridge University Press, vol. 35(5), pages 1012-1047, October.
    5. Giuseppe Cavaliere & Heino Bohn Nielsen & Anders Rahbek, 2017. "On the Consistency of Bootstrap Testing for a Parameter on the Boundary of the Parameter Space," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(4), pages 513-534, July.
    6. Feiyu Jiang & Dong Li & Ke Zhu, 2019. "Non-standard inference for augmented double autoregressive models with null volatility coefficients," Papers 1905.01798, arXiv.org.
    7. Beutner, Eric & Heinemann, Alexander & Smeekes, Stephan, 2024. "A residual bootstrap for conditional Value-at-Risk," Journal of Econometrics, Elsevier, vol. 238(2).
    8. Hetland, Simon & Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2023. "Dynamic conditional eigenvalue GARCH," Journal of Econometrics, Elsevier, vol. 237(2).
    9. Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.
    10. Ketz, Philipp, 2018. "Subvector inference when the true parameter vector may be near or at the boundary," Journal of Econometrics, Elsevier, vol. 207(2), pages 285-306.
    11. Giuseppe Cavaliere & Rasmus Søndergaard Pedersen & Anders Rahbek, 2018. "The Fixed Volatility Bootstrap for a Class of Arch(q) Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 920-941, November.
    12. Canepa Alessandra, 2022. "Small Sample Adjustment for Hypotheses Testing on Cointegrating Vectors," Journal of Time Series Econometrics, De Gruyter, vol. 14(1), pages 51-85, January.
    13. Christian Francq & Jean-Michel Zakoïan, 2008. "A Tour in the Asymptotic Theory of GARCH Estimation," Working Papers 2008-03, Center for Research in Economics and Statistics.
    14. Pedersen, Rasmus Søndergaard, 2016. "Targeting Estimation Of Ccc-Garch Models With Infinite Fourth Moments," Econometric Theory, Cambridge University Press, vol. 32(2), pages 498-531, April.
    15. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    16. Francq, Christian & Zakoïan, Jean-Michel, 2009. "Testing the Nullity of GARCH Coefficients: Correction of the Standard Tests and Relative Efficiency Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 313-324.
    17. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    18. Gabriele Fiorentini & Enrique Sentana, 2007. "On the efficiency and consistency of likelihood estimation in multivariate conditionally heteroskedastic dynamic regression models," Working Paper series 38_07, Rimini Centre for Economic Analysis.
    19. Philipp Ketz & Adam McCloskey, 2021. "Short and Simple Confidence Intervals when the Directions of Some Effects are Known," Papers 2109.08222, arXiv.org.
    20. Giuseppe Cavaliere & Anders Rahbek, 2019. "A Primer On Bootstrap Testing Of Hypotheses In Time Series Models: With An Application To Double Autoregressive Models," Discussion Papers 19-03, University of Copenhagen. Department of Economics.

    More about this item

    Keywords

    Inference on the boundary; Nuisance parameters on the boundary; ARCH models; Bootstrap;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kud:kuiedp:1810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Hoffmann (email available below). General contact details of provider: https://edirc.repec.org/data/okokudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.