IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v10y2006i5p389-431.html
   My bibliography  Save this item

Residential cogeneration systems: review of the current technology

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ryszard Zwierzchowski & Marcin Wołowicz, 2020. "Energy and Exergy Analysis of Sensible Thermal Energy Storage—Hot Water Tank for a Large CHP Plant in Poland," Energies, MDPI, vol. 13(18), pages 1-16, September.
  2. Sen, Souvik & Ganguly, Sourav, 2017. "Opportunities, barriers and issues with renewable energy development – A discussion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1170-1181.
  3. Doukas, Haris & Papadopoulou, Alexandra G. & Psarras, John & Ragwitz, Mario & Schlomann, Barbara, 2008. "Sustainable reference methodology for energy end-use efficiency data in the EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2159-2176, October.
  4. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
  5. Datas, A. & Ramos, A. & del Cañizo, C., 2019. "Techno-economic analysis of solar PV power-to-heat-to-power storage and trigeneration in the residential sector," Applied Energy, Elsevier, vol. 256(C).
  6. Fux, Samuel F. & Benz, Michael J. & Guzzella, Lino, 2013. "Economic and environmental aspects of the component sizing for a stand-alone building energy system: A case study," Renewable Energy, Elsevier, vol. 55(C), pages 438-447.
  7. Asensio, F.J. & San Martín, J.I. & Zamora, I. & Oñederra, O., 2018. "Model for optimal management of the cooling system of a fuel cell-based combined heat and power system for developing optimization control strategies," Applied Energy, Elsevier, vol. 211(C), pages 413-430.
  8. Maria Zuba-Ciszewska & Aneta Suchoń, 2024. "The Role of State Aid in the Achievement of the Energy Efficiency Objective in the Food Industry—The Example of Poland," Energies, MDPI, vol. 17(12), pages 1-32, June.
  9. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Impact analysis of sampling time interval and battery installation on optimal operational planning of residential cogeneration systems without electric power export," Energy, Elsevier, vol. 81(C), pages 120-136.
  10. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
  11. Monica Costea & Michel Feidt, 2022. "A Review Regarding Combined Heat and Power Production and Extensions: Thermodynamic Modelling and Environmental Impact," Energies, MDPI, vol. 15(23), pages 1-25, November.
  12. Lončar, D. & Duić, N. & Bogdan, Ž., 2009. "An analysis of the legal and market framework for the cogeneration sector in Croatia," Energy, Elsevier, vol. 34(2), pages 134-143.
  13. Chenghong Gu & Da Xie & Junbo Sun & Xitian Wang & Qian Ai, 2015. "Optimal Operation of Combined Heat and Power System Based on Forecasted Energy Prices in Real-Time Markets," Energies, MDPI, vol. 8(12), pages 1-16, December.
  14. Hong, Taehoon & Kim, Daeho & Koo, Choongwan & Kim, Jimin, 2014. "Framework for establishing the optimal implementation strategy of a fuel-cell-based combined heat and power system: Focused on multi-family housing complex," Applied Energy, Elsevier, vol. 127(C), pages 11-24.
  15. Li, Yan & Chang, Shanshan & Fu, Lin & Zhang, Shuyan, 2016. "A technology review on recovering waste heat from the condensers of large turbine units in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 287-296.
  16. Bouvier, Jean-Louis & Michaux, Ghislain & Salagnac, Patrick & Nepveu, François & Rochier, Dominique & Kientz, Thiebaut, 2015. "Experimental characterisation of a solar parabolic trough collector used in a micro-CHP (micro-cogeneration) system with direct steam generation," Energy, Elsevier, vol. 83(C), pages 474-485.
  17. Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2020. "Combined cooling, heating, and power generation performance of pumped thermal electricity storage system based on Brayton cycle," Applied Energy, Elsevier, vol. 278(C).
  18. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei & Aki, Hirohisa, 2016. "Operation management of residential energy-supplying networks based on optimization approaches," Applied Energy, Elsevier, vol. 183(C), pages 340-357.
  19. Milcarek, Ryan J. & DeBiase, Vincent P. & Ahn, Jeongmin, 2020. "Investigation of startup, performance and cycling of a residential furnace integrated with micro-tubular flame-assisted fuel cells for micro-combined heat and power," Energy, Elsevier, vol. 196(C).
  20. Daniel Cardoso & Daniel Nunes & João Faria & Paulo Fael & Pedro D. Gaspar, 2023. "Intelligent Micro-Cogeneration Systems for Residential Grids: A Sustainable Solution for Efficient Energy Management," Energies, MDPI, vol. 16(13), pages 1-21, July.
  21. Gómez, Antonio & Zubizarreta, Javier & Rodrigues, Marcos & Dopazo, César & Fueyo, Norberto, 2010. "Potential and cost of electricity generation from human and animal waste in Spain," Renewable Energy, Elsevier, vol. 35(2), pages 498-505.
  22. Rogers, J.G. & Cooper, S.J.G. & O’Grady, Á. & McManus, M.C. & Howard, H.R. & Hammond, G.P., 2015. "The 20% house – An integrated assessment of options for reducing net carbon emissions from existing UK houses," Applied Energy, Elsevier, vol. 138(C), pages 108-120.
  23. Farzaneh-Kord, V. & Khoshnevis, A.B. & Arabkoohsar, A. & Deymi-Dashtebayaz, M. & Aghili, M. & Khatib, M. & Kargaran, M. & Farzaneh-Gord, M., 2016. "Defining a technical criterion for economic justification of employing CHP technology in city gate stations," Energy, Elsevier, vol. 111(C), pages 389-401.
  24. Meybodi, Mehdi Aghaei & Behnia, Masud, 2013. "Australian coal mine methane emissions mitigation potential using a Stirling engine-based CHP system," Energy Policy, Elsevier, vol. 62(C), pages 10-18.
  25. Lombardi, K. & Ugursal, V.I. & Beausoleil-Morrison, I., 2010. "Proposed improvements to a model for characterizing the electrical and thermal energy performance of Stirling engine micro-cogeneration devices based upon experimental observations," Applied Energy, Elsevier, vol. 87(10), pages 3271-3282, October.
  26. Wakui, Tetsuya & Yokoyama, Ryohei, 2011. "Optimal sizing of residential gas engine cogeneration system for power interchange operation from energy-saving viewpoint," Energy, Elsevier, vol. 36(6), pages 3816-3824.
  27. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
  28. Suárez, I. & Prieto, M.M. & Fernández, F.J., 2013. "Analysis of potential energy, economic and environmental savings in residential buildings: Solar collectors combined with microturbines," Applied Energy, Elsevier, vol. 104(C), pages 128-136.
  29. Mancarella, Pierluigi & Chicco, Gianfranco, 2009. "Global and local emission impact assessment of distributed cogeneration systems with partial-load models," Applied Energy, Elsevier, vol. 86(10), pages 2096-2106, October.
  30. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
  31. Montero Carrero, Marina & De Paepe, Ward & Bram, Svend & Musin, Frédéric & Parente, Alessandro & Contino, Francesco, 2016. "Humidified micro gas turbines for domestic users: An economic and primary energy savings analysis," Energy, Elsevier, vol. 117(P2), pages 429-438.
  32. Wong, L.T. & Mui, K.W. & Guan, Y., 2010. "Shower water heat recovery in high-rise residential buildings of Hong Kong," Applied Energy, Elsevier, vol. 87(2), pages 703-709, February.
  33. Iacobescu, Flavius & Badescu, Viorel, 2011. "Metamorphoses of cogeneration-based district heating in Romania: A case study," Energy Policy, Elsevier, vol. 39(1), pages 269-280, January.
  34. Rubio-Maya, Carlos & Uche-Marcuello, Javier & Martínez-Gracia, Amaya & Bayod-Rújula, Angel A., 2011. "Design optimization of a polygeneration plant fuelled by natural gas and renewable energy sources," Applied Energy, Elsevier, vol. 88(2), pages 449-457, February.
  35. García-Canseco, Eloísa & Alvarez-Aguirre, Alejandro & Scherpen, Jacquelien M.A., 2015. "Modeling for control of a kinematic wobble-yoke Stirling engine," Renewable Energy, Elsevier, vol. 75(C), pages 808-817.
  36. Fragaki, Aikaterini & Andersen, Anders N. & Toke, David, 2008. "Exploration of economical sizing of gas engine and thermal store for combined heat and power plants in the UK," Energy, Elsevier, vol. 33(11), pages 1659-1670.
  37. Shabanpour-Haghighi, Amin & Seifi, Ali Reza, 2016. "Effects of district heating networks on optimal energy flow of multi-carrier systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 379-387.
  38. Bai, Zhang & Liu, Taixiu & Liu, Qibin & Lei, Jing & Gong, Liang & Jin, Hongguang, 2018. "Performance investigation of a new cooling, heating and power system with methanol decomposition based chemical recuperation process," Applied Energy, Elsevier, vol. 229(C), pages 1152-1163.
  39. Aziz, Faraz & Salim, Mohammad Saad & Kim, Man-Hoe, 2019. "Performance analysis of high temperature cascade organic Rankine cycle coupled with water heating system," Energy, Elsevier, vol. 170(C), pages 954-966.
  40. Edisson S. Castaño Mesa & Sebastián H. Quintana & Iván D. Bedoya, 2023. "Development of a Dual Fuel ICE-Based Micro-CHP System and Experimental Evaluation of Its Performance at Light Loads Using Natural Gas as Primary Fuel," Energies, MDPI, vol. 16(17), pages 1-24, August.
  41. Giulia Mancò & Elisa Guelpa & Vittorio Verda, 2021. "Optimal Integration of Renewable Sources and Latent Heat Storages for Residential Application," Energies, MDPI, vol. 14(17), pages 1-22, September.
  42. Gonzalo Romero Garcia & Dora Villada Castillo & Jhan Piero Rojas, 2022. "A Complete Prefeasibility Evaluation of On-Site Energy Generation Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 474-479, March.
  43. I. Aleknaviciute & T.G. Karayiannis & M.W. Collins & C. Xanthos, 2016. "Towards clean and sustainable distributed energy system: the potential of integrated PEMFC-CHP," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(3), pages 296-304.
  44. Bird, Trevor J. & Jain, Neera, 2020. "Dynamic modeling and validation of a micro-combined heat and power system with integrated thermal energy storage," Applied Energy, Elsevier, vol. 271(C).
  45. Wakui, Tetsuya & Yokoyama, Ryohei, 2012. "Optimal sizing of residential SOFC cogeneration system for power interchange operation in housing complex from energy-saving viewpoint," Energy, Elsevier, vol. 41(1), pages 65-74.
  46. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
  47. Fazlollahi, Samira & Mandel, Pierre & Becker, Gwenaelle & Maréchal, Francois, 2012. "Methods for multi-objective investment and operating optimization of complex energy systems," Energy, Elsevier, vol. 45(1), pages 12-22.
  48. Bahlouli, Keyvan & Khoshbakhti Saray, Rahim, 2016. "Energetic and exergetic analyses of a new energy system for heating and power production purposes," Energy, Elsevier, vol. 106(C), pages 390-399.
  49. Bracco, Stefano & Dentici, Gabriele & Siri, Silvia, 2013. "Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area," Energy, Elsevier, vol. 55(C), pages 1014-1024.
  50. Tapia-Ahumada, K. & Pérez-Arriaga, I.J. & Moniz, E.J., 2013. "A methodology for understanding the impacts of large-scale penetration of micro-combined heat and power," Energy Policy, Elsevier, vol. 61(C), pages 496-512.
  51. Nikolaos Diangelakis & Christos Panos & Efstratios Pistikopoulos, 2014. "Design optimization of an internal combustion engine powered CHP system for residential scale application," Computational Management Science, Springer, vol. 11(3), pages 237-266, July.
  52. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
  53. Ferreira, Ana C.M. & Nunes, Manuel L. & Teixeira, Senhorinha F.C.F. & Leão, Celina P. & Silva, Ângela M. & Teixeira, José C.F. & Martins, Luís A.S.B., 2012. "An economic perspective on the optimisation of a small-scale cogeneration system for the Portuguese scenario," Energy, Elsevier, vol. 45(1), pages 436-444.
  54. Sarabchi, N. & Khoshbakhti Saray, R. & Mahmoudi, S.M.S., 2013. "Utilization of waste heat from a HCCI (homogeneous charge compression ignition) engine in a tri-generation system," Energy, Elsevier, vol. 55(C), pages 965-976.
  55. Richter, Mario, 2012. "Utilities’ business models for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2483-2493.
  56. Heeren, Niko & Jakob, Martin & Martius, Gregor & Gross, Nadja & Wallbaum, Holger, 2013. "A component based bottom-up building stock model for comprehensive environmental impact assessment and target control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 45-56.
  57. Richter, Mario, 2013. "German utilities and distributed PV: How to overcome barriers to business model innovation," Renewable Energy, Elsevier, vol. 55(C), pages 456-466.
  58. Zhu, Shunmin & Yu, Guoyao & O, Jongmin & Xu, Tao & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2018. "Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 522-533.
  59. Madalina Barbu & George Darie & Monica Siroux, 2020. "A Parametric Study of a Hybrid Photovoltaic Thermal (PVT) System Coupled with a Domestic Hot Water (DHW) Storage Tank," Energies, MDPI, vol. 13(24), pages 1-18, December.
  60. Xuan, Jin & Leung, Michael K.H. & Leung, Dennis Y.C. & Ni, Meng, 2009. "A review of biomass-derived fuel processors for fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1301-1313, August.
  61. Pantaleo, Antonio & Candelise, Chiara & Bauen, Ausilio & Shah, Nilay, 2014. "ESCO business models for biomass heating and CHP: Profitability of ESCO operations in Italy and key factors assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 237-253.
  62. Zhu, Shunmin & Yu, Guoyao & Liang, Kun & Dai, Wei & Luo, Ercang, 2021. "A review of Stirling-engine-based combined heat and power technology," Applied Energy, Elsevier, vol. 294(C).
  63. Facci, Andrea Luigi & Andreassi, Luca & Ubertini, Stefano, 2014. "Optimization of CHCP (combined heat power and cooling) systems operation strategy using dynamic programming," Energy, Elsevier, vol. 66(C), pages 387-400.
  64. Wee, Jung-Ho, 2007. "Applications of proton exchange membrane fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1720-1738, October.
  65. A.G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Khaled Elsaid & Mohammad Ali Abdelkareem, 2020. "Prospects of Fuel Cell Combined Heat and Power Systems," Energies, MDPI, vol. 13(16), pages 1-20, August.
  66. Sibilio, Sergio & Rosato, Antonio & Ciampi, Giovanni & Scorpio, Michelangelo & Akisawa, Atsushi, 2017. "Building-integrated trigeneration system: Energy, environmental and economic dynamic performance assessment for Italian residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 920-933.
  67. Peacock, A.D. & Newborough, M., 2008. "Effect of heat-saving measures on the CO2 savings attributable to micro-combined heat and power (μCHP) systems in UK dwellings," Energy, Elsevier, vol. 33(4), pages 601-612.
  68. Staffell, Iain, 2015. "Zero carbon infinite COP heat from fuel cell CHP," Applied Energy, Elsevier, vol. 147(C), pages 373-385.
  69. Jordi Renau & Víctor García & Luis Domenech & Pedro Verdejo & Antonio Real & Alberto Giménez & Fernando Sánchez & Antonio Lozano & Félix Barreras, 2021. "Novel Use of Green Hydrogen Fuel Cell-Based Combined Heat and Power Systems to Reduce Primary Energy Intake and Greenhouse Emissions in the Building Sector," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
  70. Bai, Zhang & Liu, Qibin & Gong, Liang & Lei, Jing, 2019. "Application of a mid-/low-temperature solar thermochemical technology in the distributed energy system with cooling, heating and power production," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  71. González, Arnau & Riba, Jordi-Roger & Puig, Rita & Navarro, Pere, 2015. "Review of micro- and small-scale technologies to produce electricity and heat from Mediterranean forests׳ wood chips," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 143-155.
  72. Qiancheng Wang & Hsi-Hsien Wei & Qian Xu, 2018. "A Solid Oxide Fuel Cell (SOFC)-Based Biogas-from-Waste Generation System for Residential Buildings in China: A Feasibility Study," Sustainability, MDPI, vol. 10(7), pages 1-9, July.
  73. Madurai Elavarasan, Rajvikram & Pugazhendhi, Rishi & Irfan, Muhammad & Mihet-Popa, Lucian & Khan, Irfan Ahmad & Campana, Pietro Elia, 2022. "State-of-the-art sustainable approaches for deeper decarbonization in Europe – An endowment to climate neutral vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  74. Chesi, Andrea & Ferrara, Giovanni & Ferrari, Lorenzo & Magnani, Sandro & Tarani, Fabio, 2013. "Influence of the heat storage size on the plant performance in a Smart User case study," Applied Energy, Elsevier, vol. 112(C), pages 1454-1465.
  75. Homam Nikpey Somehsaraei & Susmita Ghosh & Sayantan Maity & Payel Pramanik & Sudipta De & Mohsen Assadi, 2020. "Automated Data Filtering Approach for ANN Modeling of Distributed Energy Systems: Exploring the Application of Machine Learning," Energies, MDPI, vol. 13(14), pages 1-15, July.
  76. Xu, Jianzhong & Sui, Jun & Li, Bingyu & Yang, Minlin, 2010. "Research, development and the prospect of combined cooling, heating, and power systems," Energy, Elsevier, vol. 35(11), pages 4361-4367.
  77. Facci, Andrea L. & Cigolotti, Viviana & Jannelli, Elio & Ubertini, Stefano, 2017. "Technical and economic assessment of a SOFC-based energy system for combined cooling, heating and power," Applied Energy, Elsevier, vol. 192(C), pages 563-574.
  78. Wakui, Tetsuya & Yokoyama, Ryohei, 2014. "Optimal structural design of residential cogeneration systems in consideration of their operating restrictions," Energy, Elsevier, vol. 64(C), pages 719-733.
  79. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei, 2016. "Optimal structural design of residential power and heat supply devices in consideration of operational and capital recovery constraints," Applied Energy, Elsevier, vol. 163(C), pages 118-133.
  80. Cho, Woojin & Lee, Kwan-Soo, 2014. "A simple sizing method for combined heat and power units," Energy, Elsevier, vol. 65(C), pages 123-133.
  81. Nikolaos Kalantzis & Antonios Pezouvanis & Kambiz M. Ebrahimi, 2017. "Internal Combustion Engine Model for Combined Heat and Power (CHP) Systems Design," Energies, MDPI, vol. 10(12), pages 1, November.
  82. Maraver, Daniel & Sin, Ana & Royo, Javier & Sebastián, Fernando, 2013. "Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters," Applied Energy, Elsevier, vol. 102(C), pages 1303-1313.
  83. Brouwer, Anne Sjoerd & Kuramochi, Takeshi & van den Broek, Machteld & Faaij, André, 2013. "Fulfilling the electricity demand of electric vehicles in the long term future: An evaluation of centralized and decentralized power supply systems," Applied Energy, Elsevier, vol. 107(C), pages 33-51.
  84. González-Pino, I. & Pérez-Iribarren, E. & Campos-Celador, A. & Las-Heras-Casas, J. & Sala, J.M., 2015. "Influence of the regulation framework on the feasibility of a Stirling engine-based residential micro-CHP installation," Energy, Elsevier, vol. 84(C), pages 575-588.
  85. Mertzis, Dimitrios & Mitsakis, Panagiotis & Tsiakmakis, Stefanos & Manara, Panagiota & Zabaniotou, Anastasia & Samaras, Zissis, 2014. "Performance analysis of a small-scale combined heat and power system using agricultural biomass residues: The SMARt-CHP demonstration project," Energy, Elsevier, vol. 64(C), pages 367-374.
  86. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Optimal structural design of residential cogeneration systems with battery based on improved solution method for mixed-integer linear programming," Energy, Elsevier, vol. 84(C), pages 106-120.
  87. Cappa, Francesco & Facci, Andrea Luigi & Ubertini, Stefano, 2015. "Proton exchange membrane fuel cell for cooperating households: A convenient combined heat and power solution for residential applications," Energy, Elsevier, vol. 90(P2), pages 1229-1238.
  88. Zhao, X.L. & Fu, L. & Zhang, S.G. & Jiang, Y. & Li, H., 2010. "Performance improvement of a 70 kWe natural gas combined heat and power (CHP) system," Energy, Elsevier, vol. 35(4), pages 1848-1853.
  89. Asaee, S. Rasoul & Ugursal, V. Ismet & Beausoleil-Morrison, Ian, 2015. "Techno-economic evaluation of internal combustion engine based cogeneration system retrofits in Canadian houses – A preliminary study," Applied Energy, Elsevier, vol. 140(C), pages 171-183.
  90. Walek, Tomasz T., 2023. "New model of cost allocation for micro-cogeneration systems applied in multi-family buildings — with standard and new-type multi-source energy meters," Energy, Elsevier, vol. 262(PB).
  91. Wang, Yaodong & Huang, Ye & Chiremba, Elijah & Roskilly, Anthony P. & Hewitt, Neil & Ding, Yulong & Wu, Dawei & Yu, Hongdong & Chen, Xiangping & Li, Yapeng & Huang, Jincheng & Wang, Ruzhu & Wu, Jingyi, 2011. "An investigation of a household size trigeneration running with hydrogen," Applied Energy, Elsevier, vol. 88(6), pages 2176-2182, June.
  92. Facci, Andrea L. & Ubertini, Stefano, 2018. "Analysis of a fuel cell combined heat and power plant under realistic smart management scenarios," Applied Energy, Elsevier, vol. 216(C), pages 60-72.
  93. Sanaye, Sepehr & Ardali, Moslem Raessi, 2009. "Estimating the power and number of microturbines in small-scale combined heat and power systems," Applied Energy, Elsevier, vol. 86(6), pages 895-903, June.
  94. Okello, Collins & Pindozzi, Stefania & Faugno, Salvatore & Boccia, Lorenzo, 2013. "Development of bioenergy technologies in Uganda: A review of progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 55-63.
  95. Nicolae I. Badea, 2021. "Hydrogen as Energy Sources—Basic Concepts," Energies, MDPI, vol. 14(18), pages 1-22, September.
  96. Guillermo Rey & Carlos Ulloa & Jose Luis Míguez & Elena Arce, 2016. "Development of an ICE-Based Micro-CHP System Based on a Stirling Engine; Methodology for a Comparative Study of its Performance and Sensitivity Analysis in Recreational Sailing Boats in Different Euro," Energies, MDPI, vol. 9(4), pages 1, March.
  97. Richter, Mario, 2013. "Business model innovation for sustainable energy: German utilities and renewable energy," Energy Policy, Elsevier, vol. 62(C), pages 1226-1237.
  98. Wakui, Tetsuya & Kinoshita, Takahiro & Yokoyama, Ryohei, 2014. "A mixed-integer linear programming approach for cogeneration-based residential energy supply networks with power and heat interchanges," Energy, Elsevier, vol. 68(C), pages 29-46.
  99. Loreti, Gabriele & Facci, Andrea L. & Baffo, Ilaria & Ubertini, Stefano, 2019. "Combined heat, cooling, and power systems based on half effect absorption chillers and polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 235(C), pages 747-760.
  100. Isa, Normazlina Mat & Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2016. "A techno-economic assessment of a combined heat and power photovoltaic/fuel cell/battery energy system in Malaysia hospital," Energy, Elsevier, vol. 112(C), pages 75-90.
  101. Wang, Y. & Barde, A. & Jin, K. & Wirz, R.E., 2020. "System performance analyses of sulfur-based thermal energy storage," Energy, Elsevier, vol. 195(C).
  102. Farahani, Yaser & Jafarian, Ali & Mahdavi Keshavar, Omid, 2022. "Dynamic simulation of a hybrid once-through and natural circulation Heat Recovery Steam Generator (HRSG)," Energy, Elsevier, vol. 242(C).
  103. Kim, Janghyun & Cho, Woojin & Lee, Kwan-Soo, 2010. "Optimum generation capacities of micro combined heat and power systems in apartment complexes with varying numbers of apartment units," Energy, Elsevier, vol. 35(12), pages 5121-5131.
  104. Sofia Boulmrharj & Mohammed Khaidar & Mohamed Bakhouya & Radouane Ouladsine & Mostapha Siniti & Khalid Zine-dine, 2020. "Performance Assessment of a Hybrid System with Hydrogen Storage and Fuel Cell for Cogeneration in Buildings," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
  105. Thu, Kyaw & Saha, Bidyut Baran & Chua, Kian Jon & Bui, Thuan Duc, 2016. "Thermodynamic analysis on the part-load performance of a microturbine system for micro/mini-CHP applications," Applied Energy, Elsevier, vol. 178(C), pages 600-608.
  106. Valentina Fortunato & Andreas Giraldo & Mehdi Rouabah & Rabia Nacereddine & Michel Delanaye & Alessandro Parente, 2018. "Experimental and Numerical Investigation of a MILD Combustion Chamber for Micro Gas Turbine Applications," Energies, MDPI, vol. 11(12), pages 1-21, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.