IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v41y2012i1p65-74.html
   My bibliography  Save this article

Optimal sizing of residential SOFC cogeneration system for power interchange operation in housing complex from energy-saving viewpoint

Author

Listed:
  • Wakui, Tetsuya
  • Yokoyama, Ryohei

Abstract

A power interchange operation, in which electric power generated by multiple residential solid oxide fuel cell cogeneration systems (R-FCGSs) is shared among residences in a housing complex with no reverse power flow to a commercial electric power system, has a high energy-saving effect as compared with a stand-alone operation of individual systems. To further improve its energy-saving effect, the optimal sizing of the R-FCGS for this power interchange operation is discussed from the energy-saving viewpoint by conducting optimal operational planning based on mixed-integer linear programming. The energy-saving effect of the power interchange operation is analyzed for 14 different scales of the R-FCGSs with the rated electric power output ranging from 0.2 to 1.5 kW per 0.1 kW. The analysis for a housing complex with 20 residences located in Japan reveals that the power interchange operation has an advantage over the stand-alone operation in terms of energy saving for any scale of the R-FCGS investigated in this study. Furthermore, it is found that the 0.6-kW R-FCGS is the optimal scale for the power interchange operation in terms of the energy saving and saves the annual primary energy consumption of 17% as compared with the conventional energy supply with no R-FCGS.

Suggested Citation

  • Wakui, Tetsuya & Yokoyama, Ryohei, 2012. "Optimal sizing of residential SOFC cogeneration system for power interchange operation in housing complex from energy-saving viewpoint," Energy, Elsevier, vol. 41(1), pages 65-74.
  • Handle: RePEc:eee:energy:v:41:y:2012:i:1:p:65-74
    DOI: 10.1016/j.energy.2011.06.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211004427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.06.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wakui, Tetsuya & Yokoyama, Ryohei & Shimizu, Ken-ichi, 2010. "Suitable operational strategy for power interchange operation using multiple residential SOFC (solid oxide fuel cell) cogeneration systems," Energy, Elsevier, vol. 35(2), pages 740-750.
    2. Wakui, Tetsuya & Yokoyama, Ryohei, 2011. "Optimal sizing of residential gas engine cogeneration system for power interchange operation from energy-saving viewpoint," Energy, Elsevier, vol. 36(6), pages 3816-3824.
    3. Onovwiona, H.I. & Ugursal, V.I., 2006. "Residential cogeneration systems: review of the current technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 389-431, October.
    4. Hawkes, Adam & Leach, Matthew, 2005. "Impacts of temporal precision in optimisation modelling of micro-Combined Heat and Power," Energy, Elsevier, vol. 30(10), pages 1759-1779.
    5. Hawkes, A.D. & Leach, M.A., 2007. "Cost-effective operating strategy for residential micro-combined heat and power," Energy, Elsevier, vol. 32(5), pages 711-723.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, K. & Hwang, H.K., 2013. "Fabrication and electrical properties of nanocrystalline Dy3+-doped CeO2 for intermediate-temperature solid oxide fuel cells," Energy, Elsevier, vol. 55(C), pages 304-309.
    2. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Impact analysis of sampling time interval and battery installation on optimal operational planning of residential cogeneration systems without electric power export," Energy, Elsevier, vol. 81(C), pages 120-136.
    3. Hirvonen, Janne & Kayo, Genku & Hasan, Ala & Sirén, Kai, 2014. "Local sharing of cogeneration energy through individually prioritized controls for increased on-site energy utilization," Applied Energy, Elsevier, vol. 135(C), pages 350-363.
    4. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2016. "Multi-objective optimization of a distributed energy network integrated with heating interchange," Energy, Elsevier, vol. 109(C), pages 353-364.
    5. Stojiljković, Mirko M., 2017. "Bi-level multi-objective fuzzy design optimization of energy supply systems aided by problem-specific heuristics," Energy, Elsevier, vol. 137(C), pages 1231-1251.
    6. Hong, Taehoon & Kim, Daeho & Koo, Choongwan & Kim, Jimin, 2014. "Framework for establishing the optimal implementation strategy of a fuel-cell-based combined heat and power system: Focused on multi-family housing complex," Applied Energy, Elsevier, vol. 127(C), pages 11-24.
    7. De Masi, Rosa Francesca & Festa, Valentino & Penchini, Daniele & Ruggiero, Silvia & Tariello, Francesco & Vanoli, Giuseppe Peter & Zinno, Alberto, 2024. "State of art of hydrogen utilization for building sector and set-up with preliminary experimental results of 1 kWel solid oxide fuel cell installed in a nearly zero energy house," Energy, Elsevier, vol. 302(C).
    8. Kupecki, Jakub & Motylinski, Konrad, 2018. "Analysis of operation of a micro-cogenerator with two solid oxide fuel cells stacks for maintaining neutral water balance," Energy, Elsevier, vol. 152(C), pages 888-895.
    9. Lee, Dasheng & Cheng, Chin-Chi, 2016. "Energy savings by energy management systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 760-777.
    10. Daeho Kim & Jimin Kim & Choongwan Koo & Taehoon Hong, 2014. "An Economic and Environmental Assessment Model for Selecting the Optimal Implementation Strategy of Fuel Cell Systems—A Focus on Building Energy Policy," Energies, MDPI, vol. 7(8), pages 1-22, August.
    11. Wakui, Tetsuya & Yokoyama, Ryohei, 2014. "Optimal structural design of residential cogeneration systems in consideration of their operating restrictions," Energy, Elsevier, vol. 64(C), pages 719-733.
    12. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei, 2016. "Optimal structural design of residential power and heat supply devices in consideration of operational and capital recovery constraints," Applied Energy, Elsevier, vol. 163(C), pages 118-133.
    13. Ou, Ting-Chia & Hong, Chih-Ming, 2014. "Dynamic operation and control of microgrid hybrid power systems," Energy, Elsevier, vol. 66(C), pages 314-323.
    14. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    15. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Optimal structural design of residential cogeneration systems with battery based on improved solution method for mixed-integer linear programming," Energy, Elsevier, vol. 84(C), pages 106-120.
    16. Wakui, Tetsuya & Kinoshita, Takahiro & Yokoyama, Ryohei, 2014. "A mixed-integer linear programming approach for cogeneration-based residential energy supply networks with power and heat interchanges," Energy, Elsevier, vol. 68(C), pages 29-46.
    17. Tanaka, T. & Inui, Y. & Pongratz, G. & Subotić, V. & Hochenauer, C., 2021. "Numerical investigation on the performance and detection of an industrial-sized planar solid oxide fuel cell with fuel gas leakage," Applied Energy, Elsevier, vol. 285(C).
    18. Bianchi, Michele & Branchini, Lisa & De Pascale, Andrea & Peretto, Antonio, 2014. "Application of environmental performance assessment of CHP systems with local and global approaches," Applied Energy, Elsevier, vol. 130(C), pages 774-782.
    19. Mirko M. Stojiljković & Mladen M. Stojiljković & Bratislav D. Blagojević, 2014. "Multi-Objective Combinatorial Optimization of Trigeneration Plants Based on Metaheuristics," Energies, MDPI, vol. 7(12), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Impact analysis of sampling time interval and battery installation on optimal operational planning of residential cogeneration systems without electric power export," Energy, Elsevier, vol. 81(C), pages 120-136.
    2. Brouwer, Anne Sjoerd & Kuramochi, Takeshi & van den Broek, Machteld & Faaij, André, 2013. "Fulfilling the electricity demand of electric vehicles in the long term future: An evaluation of centralized and decentralized power supply systems," Applied Energy, Elsevier, vol. 107(C), pages 33-51.
    3. Wakui, Tetsuya & Yokoyama, Ryohei, 2011. "Optimal sizing of residential gas engine cogeneration system for power interchange operation from energy-saving viewpoint," Energy, Elsevier, vol. 36(6), pages 3816-3824.
    4. Wakui, Tetsuya & Yokoyama, Ryohei, 2014. "Optimal structural design of residential cogeneration systems in consideration of their operating restrictions," Energy, Elsevier, vol. 64(C), pages 719-733.
    5. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei, 2016. "Optimal structural design of residential power and heat supply devices in consideration of operational and capital recovery constraints," Applied Energy, Elsevier, vol. 163(C), pages 118-133.
    6. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Optimal structural design of residential cogeneration systems with battery based on improved solution method for mixed-integer linear programming," Energy, Elsevier, vol. 84(C), pages 106-120.
    7. Wakui, Tetsuya & Kinoshita, Takahiro & Yokoyama, Ryohei, 2014. "A mixed-integer linear programming approach for cogeneration-based residential energy supply networks with power and heat interchanges," Energy, Elsevier, vol. 68(C), pages 29-46.
    8. Facci, Andrea L. & Cigolotti, Viviana & Jannelli, Elio & Ubertini, Stefano, 2017. "Technical and economic assessment of a SOFC-based energy system for combined cooling, heating and power," Applied Energy, Elsevier, vol. 192(C), pages 563-574.
    9. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
    10. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    11. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.
    12. Hawkes, A.D. & Leach, M.A., 2008. "On policy instruments for support of micro combined heat and power," Energy Policy, Elsevier, vol. 36(8), pages 2963-2972, August.
    13. Ondeck, Abigail D. & Edgar, Thomas F. & Baldea, Michael, 2015. "Optimal operation of a residential district-level combined photovoltaic/natural gas power and cooling system," Applied Energy, Elsevier, vol. 156(C), pages 593-606.
    14. Lizarraga-Garcia, Enrique & Ghobeity, Amin & Totten, Mark & Mitsos, Alexander, 2013. "Optimal operation of a solar-thermal power plant with energy storage and electricity buy-back from grid," Energy, Elsevier, vol. 51(C), pages 61-70.
    15. Löbberding, Laurens & Madlener, Reinhard, 2019. "Techno-economic analysis of micro fuel cell cogeneration and storage in Germany," Applied Energy, Elsevier, vol. 235(C), pages 1603-1613.
    16. Chesi, Andrea & Ferrara, Giovanni & Ferrari, Lorenzo & Magnani, Sandro & Tarani, Fabio, 2013. "Influence of the heat storage size on the plant performance in a Smart User case study," Applied Energy, Elsevier, vol. 112(C), pages 1454-1465.
    17. Monica Costea & Michel Feidt, 2022. "A Review Regarding Combined Heat and Power Production and Extensions: Thermodynamic Modelling and Environmental Impact," Energies, MDPI, vol. 15(23), pages 1-25, November.
    18. Fubara, Tekena Craig & Cecelja, Franjo & Yang, Aidong, 2014. "Modelling and selection of micro-CHP systems for domestic energy supply: The dimension of network-wide primary energy consumption," Applied Energy, Elsevier, vol. 114(C), pages 327-334.
    19. Peacock, A.D. & Newborough, M., 2008. "Effect of heat-saving measures on the CO2 savings attributable to micro-combined heat and power (μCHP) systems in UK dwellings," Energy, Elsevier, vol. 33(4), pages 601-612.
    20. Cappa, Francesco & Facci, Andrea Luigi & Ubertini, Stefano, 2015. "Proton exchange membrane fuel cell for cooperating households: A convenient combined heat and power solution for residential applications," Energy, Elsevier, vol. 90(P2), pages 1229-1238.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:41:y:2012:i:1:p:65-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.