IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v55y2013icp438-447.html
   My bibliography  Save this article

Economic and environmental aspects of the component sizing for a stand-alone building energy system: A case study

Author

Listed:
  • Fux, Samuel F.
  • Benz, Michael J.
  • Guzzella, Lino

Abstract

When designing a building energy system based on renewable energy sources, a major challenge is the suitable sizing of its components. In this paper, a simulation tool is presented for determining the optimal sizes of the main components of a stand-alone building energy system which integrates both thermal and electric renewable energy sources. Since the control of this multisource energy system is a non-trivial, multivariable control problem, particular emphasis is placed on the energy management system. A control structure based on model predictive control is proposed, whereas the underlying optimal control problem is formulated as a mixed-integer linear programming problem.

Suggested Citation

  • Fux, Samuel F. & Benz, Michael J. & Guzzella, Lino, 2013. "Economic and environmental aspects of the component sizing for a stand-alone building energy system: A case study," Renewable Energy, Elsevier, vol. 55(C), pages 438-447.
  • Handle: RePEc:eee:renene:v:55:y:2013:i:c:p:438-447
    DOI: 10.1016/j.renene.2012.12.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112008002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.12.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kashefi Kaviani, A. & Riahy, G.H. & Kouhsari, SH.M., 2009. "Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages," Renewable Energy, Elsevier, vol. 34(11), pages 2380-2390.
    2. Kalogirou, Soteris A., 2004. "Optimization of solar systems using artificial neural-networks and genetic algorithms," Applied Energy, Elsevier, vol. 77(4), pages 383-405, April.
    3. Onovwiona, H.I. & Ugursal, V.I., 2006. "Residential cogeneration systems: review of the current technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 389-431, October.
    4. Diaf, S. & Diaf, D. & Belhamel, M. & Haddadi, M. & Louche, A., 2007. "A methodology for optimal sizing of autonomous hybrid PV/wind system," Energy Policy, Elsevier, vol. 35(11), pages 5708-5718, November.
    5. Li, Chun-Hua & Zhu, Xin-Jian & Cao, Guang-Yi & Sui, Sheng & Hu, Ming-Ruo, 2009. "Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology," Renewable Energy, Elsevier, vol. 34(3), pages 815-826.
    6. Ai, B. & Yang, H. & Shen, H. & Liao, X., 2003. "Computer-aided design of PV/wind hybrid system," Renewable Energy, Elsevier, vol. 28(10), pages 1491-1512.
    7. Lagorse, Jeremy & Paire, Damien & Miraoui, Abdellatif, 2009. "Sizing optimization of a stand-alone street lighting system powered by a hybrid system using fuel cell, PV and battery," Renewable Energy, Elsevier, vol. 34(3), pages 683-691.
    8. Bornatico, Raffaele & Pfeiffer, Michael & Witzig, Andreas & Guzzella, Lino, 2012. "Optimal sizing of a solar thermal building installation using particle swarm optimization," Energy, Elsevier, vol. 41(1), pages 31-37.
    9. Dufo-López, Rodolfo & Bernal-Agustín, José L. & Contreras, Javier, 2007. "Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage," Renewable Energy, Elsevier, vol. 32(7), pages 1102-1126.
    10. Hakimi, S.M. & Moghaddas-Tafreshi, S.M., 2009. "Optimal sizing of a stand-alone hybrid power system via particle swarm optimization for Kahnouj area in south-east of Iran," Renewable Energy, Elsevier, vol. 34(7), pages 1855-1862.
    11. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Feasibility analysis of renewable energy supply options for a grid-connected large hotel," Renewable Energy, Elsevier, vol. 34(4), pages 955-964.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I. & Muttaqi, K.M. & Moghavvemi, S., 2015. "Effective utilization of excess energy in standalone hybrid renewable energy systems for improving comfort ability and reducing cost of energy: A review and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 726-734.
    2. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei, 2016. "Optimal structural design of residential power and heat supply devices in consideration of operational and capital recovery constraints," Applied Energy, Elsevier, vol. 163(C), pages 118-133.
    3. Torreglosa, Juan P. & García, Pablo & Fernández, Luis M. & Jurado, Francisco, 2015. "Energy dispatching based on predictive controller of an off-grid wind turbine/photovoltaic/hydrogen/battery hybrid system," Renewable Energy, Elsevier, vol. 74(C), pages 326-336.
    4. Guarino, Francesco & Cassarà, Pietro & Longo, Sonia & Cellura, Maurizio & Ferro, Erina, 2015. "Load match optimisation of a residential building case study: A cross-entropy based electricity storage sizing algorithm," Applied Energy, Elsevier, vol. 154(C), pages 380-391.
    5. Evins, Ralph, 2015. "Multi-level optimization of building design, energy system sizing and operation," Energy, Elsevier, vol. 90(P2), pages 1775-1789.
    6. Sharafi, Masoud & ElMekkawy, Tarek Y. & Bibeau, Eric L., 2015. "Optimal design of hybrid renewable energy systems in buildings with low to high renewable energy ratio," Renewable Energy, Elsevier, vol. 83(C), pages 1026-1042.
    7. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Optimal structural design of residential cogeneration systems with battery based on improved solution method for mixed-integer linear programming," Energy, Elsevier, vol. 84(C), pages 106-120.
    8. Ghasemi, Ahmad & Enayatzare, Mehdi, 2018. "Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit and demand response," Renewable Energy, Elsevier, vol. 123(C), pages 460-474.
    9. Ashouri, Araz & Petrini, Flavio & Bornatico, Raffaele & Benz, Michael J., 2014. "Sensitivity analysis for robust design of building energy systems," Energy, Elsevier, vol. 76(C), pages 264-275.
    10. Ashouri, Araz & Fux, Samuel S. & Benz, Michael J. & Guzzella, Lino, 2013. "Optimal design and operation of building services using mixed-integer linear programming techniques," Energy, Elsevier, vol. 59(C), pages 365-376.
    11. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei & Aki, Hirohisa, 2016. "Operation management of residential energy-supplying networks based on optimization approaches," Applied Energy, Elsevier, vol. 183(C), pages 340-357.
    12. Swaminathan, Siddharth & Pavlak, Gregory S. & Freihaut, James, 2020. "Sizing and dispatch of an islanded microgrid with energy flexible buildings," Applied Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    2. Tezer, Tuba & Yaman, Ramazan & Yaman, Gülşen, 2017. "Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 840-853.
    3. Iverson, Zachariah & Achuthan, Ajit & Marzocca, Pier & Aidun, Daryush, 2013. "Optimal design of hybrid renewable energy systems (HRES) using hydrogen storage technology for data center applications," Renewable Energy, Elsevier, vol. 52(C), pages 79-87.
    4. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    5. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    6. Zahraee, S.M. & Khalaji Assadi, M. & Saidur, R., 2016. "Application of Artificial Intelligence Methods for Hybrid Energy System Optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 617-630.
    7. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    8. Ashouri, Araz & Fux, Samuel S. & Benz, Michael J. & Guzzella, Lino, 2013. "Optimal design and operation of building services using mixed-integer linear programming techniques," Energy, Elsevier, vol. 59(C), pages 365-376.
    9. Borhanazad, Hanieh & Mekhilef, Saad & Gounder Ganapathy, Velappa & Modiri-Delshad, Mostafa & Mirtaheri, Ali, 2014. "Optimization of micro-grid system using MOPSO," Renewable Energy, Elsevier, vol. 71(C), pages 295-306.
    10. Khiareddine, Abla & Ben Salah, Chokri & Rekioua, Djamila & Mimouni, Mohamed Faouzi, 2018. "Sizing methodology for hybrid photovoltaic /wind/ hydrogen/battery integrated to energy management strategy for pumping system," Energy, Elsevier, vol. 153(C), pages 743-762.
    11. Erdinc, O. & Uzunoglu, M., 2010. "Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2874-2884, December.
    12. Azaza, Maher & Wallin, Fredrik, 2017. "Multi objective particle swarm optimization of hybrid micro-grid system: A case study in Sweden," Energy, Elsevier, vol. 123(C), pages 108-118.
    13. Ramli, Makbul A.M. & Bouchekara, H.R.E.H. & Alghamdi, Abdulsalam S., 2018. "Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 121(C), pages 400-411.
    14. Fadaee, M. & Radzi, M.A.M., 2012. "Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3364-3369.
    15. Asma Mohamad Aris & Bahman Shabani, 2015. "Sustainable Power Supply Solutions for Off-Grid Base Stations," Energies, MDPI, vol. 8(10), pages 1-38, September.
    16. Khare, Vikas & Nema, Savita & Baredar, Prashant, 2016. "Solar–wind hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 23-33.
    17. Ying-Yi Hong & Yuan-Ming Lai & Yung-Ruei Chang & Yih-Der Lee & Pang-Wei Liu, 2015. "Optimizing Capacities of Distributed Generation and Energy Storage in a Small Autonomous Power System Considering Uncertainty in Renewables," Energies, MDPI, vol. 8(4), pages 1-20, March.
    18. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2017. "Optimisation of stand-alone hybrid energy systems supplemented by combustion-based prime movers," Applied Energy, Elsevier, vol. 196(C), pages 18-33.
    19. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.
    20. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:55:y:2013:i:c:p:438-447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.