IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v163y2018icp290-337.html
   My bibliography  Save this article

Simulation of polygeneration systems

Author

Listed:
  • Calise, Francesco
  • de Notaristefani di Vastogirardi, Giulio
  • Dentice d'Accadia, Massimo
  • Vicidomini, Maria

Abstract

This work aims at presenting the current works concerning the polygeneration systems simulation, by specially focusing on the potential integration of different technologies into a single system. Polygeneration allows one to produce energy vectors (power, heating and cooling) as wells as other useful products (hydrogen, syngas, biodiesel, fertilizers, drinking water etc.) by converting one or multiple energy sources. Polygeneration system can be fuelled by renewable sources (geothermal, solar, biomass, wind, hydro), as well as fossil fuels (natural gas, coal, hydrogen, etc.). In this paper innovative energy technologies, such as fuel cells and conventional ones are taken into account, by also focusing on the control strategies implemented for the proper management of polygeneration systems in general. Works regarding energy, economic and exergy analyses and system optimizations are also illustrated.

Suggested Citation

  • Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
  • Handle: RePEc:eee:energy:v:163:y:2018:i:c:p:290-337
    DOI: 10.1016/j.energy.2018.08.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421831572X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benedetto Conte & Joan Carles Bruno & Alberto Coronas, 2016. "Optimal Cooling Load Sharing Strategies for Different Types of Absorption Chillers in Trigeneration Plants," Energies, MDPI, vol. 9(8), pages 1-16, July.
    2. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    3. Tempesti, Duccio & Manfrida, Giampaolo & Fiaschi, Daniele, 2012. "Thermodynamic analysis of two micro CHP systems operating with geothermal and solar energy," Applied Energy, Elsevier, vol. 97(C), pages 609-617.
    4. Khojasteh Salkuyeh, Yaser & Adams, Thomas A., 2015. "Integrated petroleum coke and natural gas polygeneration process with zero carbon emissions," Energy, Elsevier, vol. 91(C), pages 479-490.
    5. Sučić, Stjepan & Capuder, Tomislav, 2016. "Automation of flexible distributed multi-generation systems by utilizing optimized middleware platform," Applied Energy, Elsevier, vol. 169(C), pages 542-554.
    6. Meerman, J.C. & Ramírez, A. & Turkenburg, W.C. & Faaij, A.P.C., 2011. "Performance of simulated flexible integrated gasification polygeneration facilities. Part A: A technical-energetic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2563-2587, August.
    7. Costa, Andrea & Keane, Marcus M. & Torrens, J. Ignacio & Corry, Edward, 2013. "Building operation and energy performance: Monitoring, analysis and optimisation toolkit," Applied Energy, Elsevier, vol. 101(C), pages 310-316.
    8. Calise, Francesco & Dentice d'Accadia, Massimo & Figaj, Rafal Damian & Vanoli, Laura, 2016. "A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization," Energy, Elsevier, vol. 95(C), pages 346-366.
    9. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2016. "BIPVT systems for residential applications: An energy and economic analysis for European climates," Applied Energy, Elsevier, vol. 184(C), pages 1411-1431.
    10. Onovwiona, H.I. & Ugursal, V.I., 2006. "Residential cogeneration systems: review of the current technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 389-431, October.
    11. Mohan, Gowtham & Kumar, Uday & Pokhrel, Manoj Kumar & Martin, Andrew, 2016. "A novel solar thermal polygeneration system for sustainable production of cooling, clean water and domestic hot water in United Arab Emirates: Dynamic simulation and economic evaluation," Applied Energy, Elsevier, vol. 167(C), pages 173-188.
    12. Ge, Y.T. & Tassou, S.A. & Chaer, I. & Suguartha, N., 2009. "Performance evaluation of a tri-generation system with simulation and experiment," Applied Energy, Elsevier, vol. 86(11), pages 2317-2326, November.
    13. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    14. Ferrari, Mario L. & Pascenti, Matteo & Sorce, Alessandro & Traverso, Alberto & Massardo, Aristide F., 2014. "Real-time tool for management of smart polygeneration grids including thermal energy storage," Applied Energy, Elsevier, vol. 130(C), pages 670-678.
    15. Taljan, Gregor & Verbič, Gregor & Pantoš, Miloš & Sakulin, Manfred & Fickert, Lothar, 2012. "Optimal sizing of biomass-fired Organic Rankine Cycle CHP system with heat storage," Renewable Energy, Elsevier, vol. 41(C), pages 29-38.
    16. Djuric Ilic, Danica & Dotzauer, Erik & Trygg, Louise, 2012. "District heating and ethanol production through polygeneration in Stockholm," Applied Energy, Elsevier, vol. 91(1), pages 214-221.
    17. Calise, Francesco & Dentice d'Accadia, Massimo & Piacentino, Antonio, 2014. "A novel solar trigeneration system integrating PVT (photovoltaic/thermal collectors) and SW (seawater) desalination: Dynamic simulation and economic assessment," Energy, Elsevier, vol. 67(C), pages 129-148.
    18. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Hyun Cho, Jae & Lim, Wonsub & Moon, Il, 2011. "Current status and future projections of LNG demand and supplies: A global prospective," Energy Policy, Elsevier, vol. 39(7), pages 4097-4104, July.
    19. Zhang, Yin & Wang, Xin & Zhuo, Siwen & Zhang, Yinping, 2016. "Pre-feasibility of building cooling heating and power system with thermal energy storage considering energy supply–demand mismatch," Applied Energy, Elsevier, vol. 167(C), pages 125-134.
    20. Calise, Francesco & Macaluso, Adriano & Piacentino, Antonio & Vanoli, Laura, 2017. "A novel hybrid polygeneration system supplying energy and desalinated water by renewable sources in Pantelleria Island," Energy, Elsevier, vol. 137(C), pages 1086-1106.
    21. Menon, Ramanunni P. & Paolone, Mario & Maréchal, François, 2013. "Study of optimal design of polygeneration systems in optimal control strategies," Energy, Elsevier, vol. 55(C), pages 134-141.
    22. Alanne, Kari & Saari, Arto, 2006. "Distributed energy generation and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 539-558, December.
    23. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    24. Li, Miao & Mu, Hailin & Li, Nan & Ma, Baoyu, 2016. "Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system," Energy, Elsevier, vol. 99(C), pages 202-220.
    25. Duić, Neven & Guzović, Zvonimir & Kafarov, Vyatcheslav & Klemeš, Jiří Jaromír & Mathiessen, Brian vad & Yan, Jinyue, 2013. "Sustainable development of energy, water and environment systems," Applied Energy, Elsevier, vol. 101(C), pages 3-5.
    26. Calise, Francesco & Figaj, Rafal Damian & Massarotti, Nicola & Mauro, Alessandro & Vanoli, Laura, 2017. "Polygeneration system based on PEMFC, CPVT and electrolyzer: Dynamic simulation and energetic and economic analysis," Applied Energy, Elsevier, vol. 192(C), pages 530-542.
    27. Sibilio, Sergio & Rosato, Antonio & Ciampi, Giovanni & Scorpio, Michelangelo & Akisawa, Atsushi, 2017. "Building-integrated trigeneration system: Energy, environmental and economic dynamic performance assessment for Italian residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 920-933.
    28. Rong, Aiying & Lahdelma, Risto, 2016. "Role of polygeneration in sustainable energy system development challenges and opportunities from optimization viewpoints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 363-372.
    29. Mehleri, Eugenia D. & Sarimveis, Haralambos & Markatos, Nikolaos C. & Papageorgiou, Lazaros G., 2012. "A mathematical programming approach for optimal design of distributed energy systems at the neighbourhood level," Energy, Elsevier, vol. 44(1), pages 96-104.
    30. Kyriakarakos, George & Dounis, Anastasios I. & Rozakis, Stelios & Arvanitis, Konstantinos G. & Papadakis, George, 2011. "Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel," Applied Energy, Elsevier, vol. 88(12), pages 4517-4526.
    31. Bicer, Yusuf & Dincer, Ibrahim, 2016. "Analysis and performance evaluation of a renewable energy based multigeneration system," Energy, Elsevier, vol. 94(C), pages 623-632.
    32. Suleman, F. & Dincer, I. & Agelin-Chaab, M., 2014. "Development of an integrated renewable energy system for multigeneration," Energy, Elsevier, vol. 78(C), pages 196-204.
    33. Julia Marín-Sáez & Daniel Chemisana & Álex Moreno & Alberto Riverola & Jesús Atencia & María-Victoria Collados, 2016. "Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications," Energies, MDPI, vol. 9(8), pages 1-19, July.
    34. Jana, Kuntal & Ray, Avishek & Majoumerd, Mohammad Mansouri & Assadi, Mohsen & De, Sudipta, 2017. "Polygeneration as a future sustainable energy solution – A comprehensive review," Applied Energy, Elsevier, vol. 202(C), pages 88-111.
    35. Sahoo, U. & Kumar, R. & Pant, P.C. & Chaudhury, R., 2015. "Scope and sustainability of hybrid solar–biomass power plant with cooling, desalination in polygeneration process in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 304-316.
    36. Gao, Lin & Li, Hongqiang & Chen, Bin & Jin, Hongguang & Lin, Rumou & Hong, Hui, 2008. "Proposal of a natural gas-based polygeneration system for power and methanol production," Energy, Elsevier, vol. 33(2), pages 206-212.
    37. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    38. Hossain, A.K. & Thorpe, R. & Vasudevan, P. & Sen, P.K. & Critoph, R.E. & Davies, P.A., 2013. "Omnigen: Providing electricity, food preparation, cold storage and pure water using a variety of local fuels," Renewable Energy, Elsevier, vol. 49(C), pages 197-202.
    39. Mahrokh Samavati & Rizwan Raza & Bin Zhu, 2012. "Design of a 5-kW advanced fuel cell polygeneration system," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(2), pages 173-180, September.
    40. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    41. Wu, J.Y. & Wang, J.L. & Li, S. & Wang, R.Z., 2014. "Experimental and simulative investigation of a micro-CCHP (micro combined cooling, heating and power) system with thermal management controller," Energy, Elsevier, vol. 68(C), pages 444-453.
    42. Murugan, S. & Horák, Bohumil, 2016. "Tri and polygeneration systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1032-1051.
    43. Calise, Francesco & Ferruzzi, Gabriele & Vanoli, Laura, 2012. "Transient simulation of polygeneration systems based on PEM fuel cells and solar heating and cooling technologies," Energy, Elsevier, vol. 41(1), pages 18-30.
    44. Uris, María & Linares, José Ignacio & Arenas, Eva, 2017. "Feasibility assessment of an Organic Rankine Cycle (ORC) cogeneration plant (CHP/CCHP) fueled by biomass for a district network in mainland Spain," Energy, Elsevier, vol. 133(C), pages 969-985.
    45. Pan, Ming & Aziz, Farah & Li, Baohong & Perry, Simon & Zhang, Nan & Bulatov, Igor & Smith, Robin, 2016. "Application of optimal design methodologies in retrofitting natural gas combined cycle power plants with CO2 capture," Applied Energy, Elsevier, vol. 161(C), pages 695-706.
    46. Huang, Y. & Wang, Y.D. & Chen, Haisheng & Zhang, Xinjing & Mondol, J. & Shah, N. & Hewitt, N.J., 2017. "Performance analysis of biofuel fired trigeneration systems with energy storage for remote households," Applied Energy, Elsevier, vol. 186(P3), pages 530-538.
    47. Li, Yuanyuan & Zhang, Guoqiang & Yang, Yongping & Zhai, Dailong & Zhang, Kai & Xu, Gang, 2014. "Thermodynamic analysis of a coal-based polygeneration system with partial gasification," Energy, Elsevier, vol. 72(C), pages 201-214.
    48. Tian, Zhe & Niu, Jide & Lu, Yakai & He, Shunming & Tian, Xue, 2016. "The improvement of a simulation model for a distributed CCHP system and its influence on optimal operation cost and strategy," Applied Energy, Elsevier, vol. 165(C), pages 430-444.
    49. Ondeck, Abigail D. & Edgar, Thomas F. & Baldea, Michael, 2015. "Optimal operation of a residential district-level combined photovoltaic/natural gas power and cooling system," Applied Energy, Elsevier, vol. 156(C), pages 593-606.
    50. Serra, Luis M. & Lozano, Miguel-Angel & Ramos, Jose & Ensinas, Adriano V. & Nebra, Silvia A., 2009. "Polygeneration and efficient use of natural resources," Energy, Elsevier, vol. 34(5), pages 575-586.
    51. Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
    52. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2015. "Energy and economic analysis of geothermal–solar trigeneration systems: A case study for a hotel building in Ischia," Applied Energy, Elsevier, vol. 138(C), pages 224-241.
    53. Francesco Calise & Massimo Dentice D’Accadia, 2016. "Simulation of Polygeneration Systems," Energies, MDPI, vol. 9(11), pages 1-9, November.
    54. Jana, Kuntal & De, Sudipta, 2015. "Polygeneration using agricultural waste: Thermodynamic and economic feasibility study," Renewable Energy, Elsevier, vol. 74(C), pages 648-660.
    55. Rubio-Maya, Carlos & Uche-Marcuello, Javier & Martínez-Gracia, Amaya & Bayod-Rújula, Angel A., 2011. "Design optimization of a polygeneration plant fuelled by natural gas and renewable energy sources," Applied Energy, Elsevier, vol. 88(2), pages 449-457, February.
    56. Pantaleo, Antonio M. & Camporeale, Sergio M. & Miliozzi, Adio & Russo, Valeria & Shah, Nilay & Markides, Christos N., 2017. "Novel hybrid CSP-biomass CHP for flexible generation: Thermo-economic analysis and profitability assessment," Applied Energy, Elsevier, vol. 204(C), pages 994-1006.
    57. Lythcke-Jørgensen, Christoffer & Clausen, Lasse Røngaard & Algren, Loui & Hansen, Anders Bavnhøj & Münster, Marie & Gadsbøll, Rasmus Østergaard & Haglind, Fredrik, 2017. "Optimization of a flexible multi-generation system based on wood chip gasification and methanol production," Applied Energy, Elsevier, vol. 192(C), pages 337-359.
    58. Alexandros Arsalis & Andreas N. Alexandrou & George E. Georghiou, 2016. "Thermoeconomic Modeling and Parametric Study of a Photovoltaic-Assisted 1 MW e Combined Cooling, Heating, and Power System," Energies, MDPI, vol. 9(8), pages 1-15, August.
    59. Jana, Kuntal & De, Sudipta, 2015. "Sustainable polygeneration design and assessment through combined thermodynamic, economic and environmental analysis," Energy, Elsevier, vol. 91(C), pages 540-555.
    60. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    61. Farhat, Karim & Reichelstein, Stefan, 2016. "Economic value of flexible hydrogen-based polygeneration energy systems," Applied Energy, Elsevier, vol. 164(C), pages 857-870.
    62. Basrawi, Firdaus & Yamada, Takanobu & Obara, Shin’ya, 2014. "Economic and environmental based operation strategies of a hybrid photovoltaic–microgas turbine trigeneration system," Applied Energy, Elsevier, vol. 121(C), pages 174-183.
    63. Kieffer, Matthew & Brown, Tristan & Brown, Robert C., 2016. "Flex fuel polygeneration: Integrating renewable natural gas into Fischer–Tropsch synthesis," Applied Energy, Elsevier, vol. 170(C), pages 208-218.
    64. Gao, Penghui & Li, Wangliang & Cheng, Yongpan & Tong, YenWah & Dai, Yanjun & Wang, Ruzhu, 2014. "Thermodynamic performance assessment of CCHP system driven by different composition gas," Applied Energy, Elsevier, vol. 136(C), pages 599-610.
    65. Elisa Marrasso & Carlo Roselli & Maurizio Sasso & Francesco Tariello, 2016. "Analysis of a Hybrid Solar-Assisted Trigeneration System," Energies, MDPI, vol. 9(9), pages 1-23, September.
    66. Xiangang Peng & Lixiang Lin & Weiqin Zheng & Yi Liu, 2015. "Crisscross Optimization Algorithm and Monte Carlo Simulation for Solving Optimal Distributed Generation Allocation Problem," Energies, MDPI, vol. 8(12), pages 1-19, December.
    67. Maidment, G. G. & Zhao, X. & Riffat, S. B. & Prosser, G., 1999. "Application of combined heat-and-power and absorption cooling in a supermarket," Applied Energy, Elsevier, vol. 63(3), pages 169-190, July.
    68. Calise, Francesco & Dentice d'Accadia, Massimo & Macaluso, Adriano & Vanoli, Laura & Piacentino, Antonio, 2016. "A novel solar-geothermal trigeneration system integrating water desalination: Design, dynamic simulation and economic assessment," Energy, Elsevier, vol. 115(P3), pages 1533-1547.
    69. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    70. Fan, Junming & Hong, Hui & Zhu, Lin & Jiang, Qiongqiong & Jin, Hongguang, 2017. "Thermodynamic and environmental evaluation of biomass and coal co-fuelled gasification chemical looping combustion with CO2 capture for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 195(C), pages 861-876.
    71. Calise, F. & Dentice d'Accadia, M. & Piacentino, A., 2015. "Exergetic and exergoeconomic analysis of a renewable polygeneration system and viability study for small isolated communities," Energy, Elsevier, vol. 92(P3), pages 290-307.
    72. Guillermo Rey & Carlos Ulloa & Jose Luis Míguez & Elena Arce, 2016. "Development of an ICE-Based Micro-CHP System Based on a Stirling Engine; Methodology for a Comparative Study of its Performance and Sensitivity Analysis in Recreational Sailing Boats in Different Euro," Energies, MDPI, vol. 9(4), pages 1-14, March.
    73. Mata-Torres, Carlos & Escobar, Rodrigo A. & Cardemil, José M. & Simsek, Yeliz & Matute, José A., 2017. "Solar polygeneration for electricity production and desalination: Case studies in Venezuela and northern Chile," Renewable Energy, Elsevier, vol. 101(C), pages 387-398.
    74. Taymaz, Imdat, 2006. "An experimental study of energy balance in low heat rejection diesel engine," Energy, Elsevier, vol. 31(2), pages 364-371.
    75. Buoro, Dario & Pinamonti, Piero & Reini, Mauro, 2014. "Optimization of a Distributed Cogeneration System with solar district heating," Applied Energy, Elsevier, vol. 124(C), pages 298-308.
    76. Francesco Calise & Massimo Dentice D'Accadia & Antonio Piacentino & Maria Vicidomini, 2015. "Thermoeconomic Optimization of a Renewable Polygeneration System Serving a Small Isolated Community," Energies, MDPI, vol. 8(2), pages 1-30, January.
    77. Barsali, S. & De Marco, A. & Giglioli, R. & Ludovici, G. & Possenti, A., 2015. "Dynamic modelling of biomass power plant using micro gas turbine," Renewable Energy, Elsevier, vol. 80(C), pages 806-818.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hosan, Shahadat & Rahman, Md Matiar & Karmaker, Shamal Chandra & Saha, Bidyut Baran, 2023. "Energy subsidies and energy technology innovation: Policies for polygeneration systems diffusion," Energy, Elsevier, vol. 267(C).
    2. Alfredo Gimelli & Massimiliano Muccillo, 2021. "Development of a 1 kW Micro-Polygeneration System Fueled by Natural Gas for Single-Family Users," Energies, MDPI, vol. 14(24), pages 1-21, December.
    3. Dariusz Mikielewicz & Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Gas Turbine Cycle with External Combustion Chamber for Prosumer and Distributed Energy Systems," Energies, MDPI, vol. 12(18), pages 1-19, September.
    4. Calise, F. & Cappiello, F.L. & Cimmino, L. & Vicidomini, M., 2024. "Semi-stationary and dynamic simulation models: A critical comparison of the energy and economic savings for the energy refurbishment of buildings," Energy, Elsevier, vol. 300(C).
    5. Kasaeian, Alibakhsh & Bellos, Evangelos & Shamaeizadeh, Armin & Tzivanidis, Christos, 2020. "Solar-driven polygeneration systems: Recent progress and outlook," Applied Energy, Elsevier, vol. 264(C).
    6. Se-Hyeok Choi & Akhtar Hussain & Hak-Man Kim, 2019. "Optimal Operation of Building Microgrids with Rooftop Greenhouse Under Component Outages in Islanded Mode," Energies, MDPI, vol. 12(10), pages 1-23, May.
    7. Fong, K.F. & Lee, C.K., 2019. "Performance investigation of a SOFC-primed micro-combined hybrid cooling and power system in hot and humid regions," Energy, Elsevier, vol. 189(C).
    8. Wu, Wei & Taipabu, Muhammad Ikhsan & Chang, Wei-Chen & Viswanathan, Karthickeyan & Xie, Yi-Lin & Kuo, Po-Chih, 2022. "Economic dispatch of torrefied biomass polygeneration systems considering power/SNG grid demands," Renewable Energy, Elsevier, vol. 196(C), pages 707-719.
    9. Košnjek, Edvard & Sučić, Boris & Kostić, Dušan & Smolej, Tom, 2024. "An energy community as a platform for local sector coupling: From complex modelling to simulation and implementation," Energy, Elsevier, vol. 286(C).
    10. Wang, Xiaomeng & Duan, Liqiang & Zheng, Nan, 2024. "Thermodynamic and economic analysis of a new CCHP system with active solar energy storage and decoupling of power and cooling outputs," Energy, Elsevier, vol. 307(C).
    11. Gimelli, A. & Muccillo, M., 2019. "Performance assessment of a 15 kW Micro-CHCP plant through the 0D/1D thermo-fluid dynamic characterization of a double water circuit waste heat recovery system," Energy, Elsevier, vol. 181(C), pages 803-814.
    12. Pinto, Edwin S. & Gronier, Timothé & Franquet, Erwin & Serra, Luis M., 2023. "Opportunities and economic assessment for a third-party delivering electricity, heat and cold to residential buildings," Energy, Elsevier, vol. 272(C).
    13. Tan, Raymond R. & Aviso, Kathleen B. & Foo, Dominic C.Y. & Lee, Jui-Yuan & Ubando, Aristotle T., 2019. "Optimal synthesis of negative emissions polygeneration systems with desalination," Energy, Elsevier, vol. 187(C).
    14. Dariusz Mikielewicz & Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Influence of Different Biofuels on the Efficiency of Gas Turbine Cycles for Prosumer and Distributed Energy Power Plants," Energies, MDPI, vol. 12(16), pages 1-21, August.
    15. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Energy and economic analysis of a small hybrid solar-geothermal trigeneration system: A dynamic approach," Energy, Elsevier, vol. 208(C).
    16. Calise, Francesco & Cappiello, Francesco L. & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2021. "Thermo-economic optimization of a novel hybrid renewable trigeneration plant," Renewable Energy, Elsevier, vol. 175(C), pages 532-549.
    17. Luis Gabriel Gesteira & Javier Uche, 2022. "A Novel Polygeneration System Based on a Solar-Assisted Desiccant Cooling System for Residential Buildings: An Energy and Environmental Analysis," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    18. Wegener, Moritz & Villarroel Schneider, J. & Malmquist, Anders & Isalgue, Antonio & Martin, Andrew & Martin, Viktoria, 2021. "Techno-economic optimization model for polygeneration hybrid energy storage systems using biogas and batteries," Energy, Elsevier, vol. 218(C).
    19. Francesco Calise & Francesco Liberato Cappiello & Massimo Dentice d’Accadia & Maria Vicidomini, 2020. "Thermo-Economic Analysis of Hybrid Solar-Geothermal Polygeneration Plants in Different Configurations," Energies, MDPI, vol. 13(9), pages 1-29, May.
    20. Marrasso, E. & Roselli, C. & Sasso, M. & Tariello, F., 2019. "Comparison of centralized and decentralized air-conditioning systems for a multi-storey/multi users building integrated with electric and diesel vehicles and considering the evolution of the national ," Energy, Elsevier, vol. 177(C), pages 319-333.
    21. Valeria Palomba & Emiliano Borri & Antonios Charalampidis & Andrea Frazzica & Sotirios Karellas & Luisa F. Cabeza, 2021. "An Innovative Solar-Biomass Energy System to Increase the Share of Renewables in Office Buildings," Energies, MDPI, vol. 14(4), pages 1-25, February.
    22. Tafone, Alessio & Raj Thangavelu, Sundar & Morita, Shigenori & Romagnoli, Alessandro, 2023. "Design optimization of a novel cryo-polygeneration demonstrator developed in Singapore – Techno-economic feasibility study for a cooling dominated tropical climate," Applied Energy, Elsevier, vol. 330(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jana, Kuntal & Ray, Avishek & Majoumerd, Mohammad Mansouri & Assadi, Mohsen & De, Sudipta, 2017. "Polygeneration as a future sustainable energy solution – A comprehensive review," Applied Energy, Elsevier, vol. 202(C), pages 88-111.
    2. Kasaeian, Alibakhsh & Bellos, Evangelos & Shamaeizadeh, Armin & Tzivanidis, Christos, 2020. "Solar-driven polygeneration systems: Recent progress and outlook," Applied Energy, Elsevier, vol. 264(C).
    3. Francesco Calise & Massimo Dentice D’Accadia, 2016. "Simulation of Polygeneration Systems," Energies, MDPI, vol. 9(11), pages 1-9, November.
    4. Wegener, Moritz & Malmquist, Anders & Isalgué, Antonio & Martin, Andrew, 2018. "Biomass-fired combined cooling, heating and power for small scale applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 392-410.
    5. Calise, Francesco & Macaluso, Adriano & Piacentino, Antonio & Vanoli, Laura, 2017. "A novel hybrid polygeneration system supplying energy and desalinated water by renewable sources in Pantelleria Island," Energy, Elsevier, vol. 137(C), pages 1086-1106.
    6. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Energy and economic analysis of a small hybrid solar-geothermal trigeneration system: A dynamic approach," Energy, Elsevier, vol. 208(C).
    7. Modi, Anish & Bühler, Fabian & Andreasen, Jesper Graa & Haglind, Fredrik, 2017. "A review of solar energy based heat and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1047-1064.
    8. Mohammadi, Kasra & Khanmohammadi, Saber & Khorasanizadeh, Hossein & Powell, Kody, 2020. "A comprehensive review of solar only and hybrid solar driven multigeneration systems: Classifications, benefits, design and prospective," Applied Energy, Elsevier, vol. 268(C).
    9. Segurado, R. & Pereira, S. & Correia, D. & Costa, M., 2019. "Techno-economic analysis of a trigeneration system based on biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 501-514.
    10. Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
    11. Calise, Francesco & Cappiello, Francesco L. & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2021. "Thermo-economic optimization of a novel hybrid renewable trigeneration plant," Renewable Energy, Elsevier, vol. 175(C), pages 532-549.
    12. Uche, J. & Muzás, A. & Acevedo, L.E. & Usón, S. & Martínez, A. & Bayod, A.A., 2020. "Experimental tests to validate the simulation model of a Domestic Trigeneration Scheme with hybrid RESs and Desalting Techniques," Renewable Energy, Elsevier, vol. 155(C), pages 407-419.
    13. Mongibello, Luigi & Bianco, Nicola & Caliano, Martina & Graditi, Giorgio, 2016. "Comparison between two different operation strategies for a heat-driven residential natural gas-fired CHP system: Heat dumping vs. load partialization," Applied Energy, Elsevier, vol. 184(C), pages 55-67.
    14. Usón, Sergio & Uche, Javier & Martínez, Amaya & del Amo, Alejandro & Acevedo, Luis & Bayod, Ángel, 2019. "Exergy assessment and exergy cost analysis of a renewable-based and hybrid trigeneration scheme for domestic water and energy supply," Energy, Elsevier, vol. 168(C), pages 662-683.
    15. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2018. "Allocation of economic costs in trigeneration systems at variable load conditions including renewable energy sources and thermal energy storage," Energy, Elsevier, vol. 151(C), pages 633-646.
    16. Calise, Francesco & Dentice d'Accadia, Massimo & Macaluso, Adriano & Vanoli, Laura & Piacentino, Antonio, 2016. "A novel solar-geothermal trigeneration system integrating water desalination: Design, dynamic simulation and economic assessment," Energy, Elsevier, vol. 115(P3), pages 1533-1547.
    17. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    18. Calise, Francesco & Figaj, Rafal Damian & Massarotti, Nicola & Mauro, Alessandro & Vanoli, Laura, 2017. "Polygeneration system based on PEMFC, CPVT and electrolyzer: Dynamic simulation and energetic and economic analysis," Applied Energy, Elsevier, vol. 192(C), pages 530-542.
    19. Luis Gabriel Gesteira & Javier Uche, 2022. "A Novel Polygeneration System Based on a Solar-Assisted Desiccant Cooling System for Residential Buildings: An Energy and Environmental Analysis," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    20. Calise, Francesco & Dentice d’Accadia, Massimo & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Transient analysis of solar polygeneration systems including seawater desalination: A comparison between linear Fresnel and evacuated solar collectors," Energy, Elsevier, vol. 172(C), pages 647-660.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:163:y:2018:i:c:p:290-337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.