IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2895-d1413817.html
   My bibliography  Save this article

The Role of State Aid in the Achievement of the Energy Efficiency Objective in the Food Industry—The Example of Poland

Author

Listed:
  • Maria Zuba-Ciszewska

    (Institute of Economics and Finance, Faculty of Social Sciences, The John Paul II Catholic University of Lublin, Al. Racławickie 14, 20-950 Lublin, Poland)

  • Aneta Suchoń

    (Department of Agricultural, Food and Environmental Protection Law, Faculty of Law and Administration, Adam Mickiewicz University, Al. Niepodległości 53, 61-714 Poznań, Poland)

Abstract

The aims of the article are to assess the legal conditions for improving energy efficiency in the energy-intensive food industry in Poland, including the rules for financing enterprises from public funds, and to assess the extent of state aid for these enterprises in their pursuit of energy saving goals. A critical analysis of the literature and of legal regulations on energy efficiency in EU and Polish law has been performed. The analysis of state aid is based on SUDOP data, and it takes into account the time span, the food industry structure, the enterprise size, the type and purpose of aid granted, and the degree of aid concentration. The conducted research showed that the largest share of state aid is received by energy-intensive industries, i.e., meat, fruit and vegetables, and dairy products (65.5%), and by large- and medium-sized enterprises (82.4%). This aid was allocated through various programmes and in various forms, the most important of which were subsidies. The aid focused on three objectives, i.e., promotion of energy from renewable sources, high-efficiency cogeneration, and measures supporting energy efficiency. The study shows the development of legislation on energy efficiency and possibilities for financing investments, both at the EU and national levels. Tightening climate policy will enhance the importance of energy efficiency in the food industry, which should be reflected in an increase in the relatively low current level of this aid (amounting to 0.04% of total state aid and 0.17% of aid for environmental protection and energy purposes).

Suggested Citation

  • Maria Zuba-Ciszewska & Aneta Suchoń, 2024. "The Role of State Aid in the Achievement of the Energy Efficiency Objective in the Food Industry—The Example of Poland," Energies, MDPI, vol. 17(12), pages 1-32, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2895-:d:1413817
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2895/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2895/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alfredo Grau & Araceli Reig, 2021. "Operating leverage and profitability of SMEs: agri-food industry in Europe," Small Business Economics, Springer, vol. 57(1), pages 221-242, June.
    2. Philipp, Matthias & Schumm, Gregor & Peesel, Ron-Hendrik & Walmsley, Timothy G. & Atkins, Martin J. & Schlosser, Florian & Hesselbach, Jens, 2018. "Optimal energy supply structures for industrial food processing sites in different countries considering energy transitions," Energy, Elsevier, vol. 146(C), pages 112-123.
    3. Canning, Patrick N. & Charles, Ainsley & Huang, Sonja & Polenske, Karen R. & Waters, Arnold, 2010. "Energy Use in the U.S. Food System," Economic Research Report 59381, United States Department of Agriculture, Economic Research Service.
    4. Onovwiona, H.I. & Ugursal, V.I., 2006. "Residential cogeneration systems: review of the current technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 389-431, October.
    5. Canning, Patrick N., 2010. "Fuel for Food: Energy Use in the U.S. Food System," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, pages 1-6.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbe Hamilton & Stephen B. Balogh & Adrienna Maxwell & Charles A. S. Hall, 2013. "Efficiency of Edible Agriculture in Canada and the U.S. Over the Past Three and Four Decades," Energies, MDPI, vol. 6(3), pages 1-30, March.
    2. Boehm, Rebecca & Wilde, Parke E. & Ver Ploeg, Michele & Costello, Christine & Cash, Sean B., 2018. "A Comprehensive Life Cycle Assessment of Greenhouse Gas Emissions from U.S. Household Food Choices," Food Policy, Elsevier, vol. 79(C), pages 67-76.
    3. Hilario Becerril & Ignacio De los Rios, 2016. "Energy Efficiency Strategies for Ecological Greenhouses: Experiences from Murcia (Spain)," Energies, MDPI, vol. 9(11), pages 1-23, October.
    4. Canning, Patrick & Rehkamp, Sarah, 2016. "The Effects of a CO2 Emissions Tax on American Diets," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235928, Agricultural and Applied Economics Association.
    5. Peters, Christian J. & Picardy, Jamie A. & Darrouzet-Nardi, Amelia & Griffin, Timothy S., 2014. "Feed conversions, ration compositions, and land use efficiencies of major livestock products in U.S. agricultural systems," Agricultural Systems, Elsevier, vol. 130(C), pages 35-43.
    6. Sabine O’Hara & Sigamoney Naicker, 2022. "Local Commitment and Global Reach: Advancing Sustainable Capacity Building in Higher Education," World, MDPI, vol. 3(4), pages 1-19, October.
    7. Baboo Lesh Gowreesunker & Savvas Tassou & James Atuonwu, 2018. "Cost-Energy Optimum Pathway for the UK Food Manufacturing Industry to Meet the UK National Emission Targets," Energies, MDPI, vol. 11(10), pages 1-19, October.
    8. Rehkamp, Sarah & Canning, Patrick, 2016. "The Effects of American Diets on Food System Energy Use," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235896, Agricultural and Applied Economics Association.
    9. Carlos Francisco Terneus Páez & Oswaldo Viteri Salazar, 2022. "The Water–Energy–Food Nexus: An Analysis of Food Sustainability in Ecuador," Resources, MDPI, vol. 11(10), pages 1-21, September.
    10. Joseph R. Burger & James H. Brown & John W. Day & Tatiana P. Flanagan & Eric D. Roy, 2019. "The Central Role of Energy in the Urban Transition: Global Challenges for Sustainability," Biophysical Economics and Resource Quality, Springer, vol. 4(1), pages 1-13, March.
    11. Rae Zimmerman & Quanyan Zhu & Carolyn Dimitri, 2016. "Promoting resilience for food, energy, and water interdependencies," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 50-61, March.
    12. Erika Allen Wolters & Brent S. Steel & Sydney Anderson & Heather Moline, 2021. "The Future of Food: Understanding Public Preferences for the Management of Agricultural Resources," IJERPH, MDPI, vol. 18(13), pages 1-20, June.
    13. Wang, Yixuan & Desai, Saumya & Kemmerling, Leonie & Trmcic, Aljosa & Wiedmann, Martin & Adalja, Aaron A., 2024. "Dynamic pricing to reducing dairy food waste: Evidence from lab and grocery store experiments," 2024 Annual Meeting, July 28-30, New Orleans, LA 343665, Agricultural and Applied Economics Association.
    14. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    15. Daniel Cardoso & Daniel Nunes & João Faria & Paulo Fael & Pedro D. Gaspar, 2023. "Intelligent Micro-Cogeneration Systems for Residential Grids: A Sustainable Solution for Efficient Energy Management," Energies, MDPI, vol. 16(13), pages 1-21, July.
    16. Gonzalo Romero Garcia & Dora Villada Castillo & Jhan Piero Rojas, 2022. "A Complete Prefeasibility Evaluation of On-Site Energy Generation Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 474-479, March.
    17. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    18. Ron-Hendrik Hechelmann & Jan-Peter Seevers & Alexander Otte & Jan Sponer & Matthias Stark, 2020. "Renewable Energy Integration for Steam Supply of Industrial Processes—A Food Processing Case Study," Energies, MDPI, vol. 13(10), pages 1-20, May.
    19. Facci, Andrea L. & Cigolotti, Viviana & Jannelli, Elio & Ubertini, Stefano, 2017. "Technical and economic assessment of a SOFC-based energy system for combined cooling, heating and power," Applied Energy, Elsevier, vol. 192(C), pages 563-574.
    20. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2895-:d:1413817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.