IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i4p1848-1853.html
   My bibliography  Save this article

Performance improvement of a 70 kWe natural gas combined heat and power (CHP) system

Author

Listed:
  • Zhao, X.L.
  • Fu, L.
  • Zhang, S.G.
  • Jiang, Y.
  • Li, H.

Abstract

Combined heat and power is the simultaneous production of electricity and heat. CHP plants produce energy in an efficient way. A natural gas CHP system based on an internal combustion engine (ICE) is described, which has been set up at the Building Energy Research Center in Beijing, China. The system is composed of an ICE, a flue gas heat exchanger, a jacket water heat exchanger and other assistant facilities. The ICE generates power on-site, and the exhaust of the ICE is recovered by the flue gas heat exchanger, and the heat of the engine jacket is recovered by the jacket water heat exchanger to district heating system. In order to improve the performance of the system, an absorption heat pump (AHP) is adopted. The exhaust of the ICE drives the AHP to recover the sensible and latent heat step by step, and the temperature of the exhaust could be lowered to below 30 °C. In this paper, the performance of the new system were tested and compared with conventional cogeneration systems. The results show that the new CHP system could increase the heat utilization efficiency 10% compared to conventional systems in winter. All the results could be valuable references for the improvement of the CHP system.

Suggested Citation

  • Zhao, X.L. & Fu, L. & Zhang, S.G. & Jiang, Y. & Li, H., 2010. "Performance improvement of a 70 kWe natural gas combined heat and power (CHP) system," Energy, Elsevier, vol. 35(4), pages 1848-1853.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:4:p:1848-1853
    DOI: 10.1016/j.energy.2010.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210000071
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Fu & Yi, Jiang, 2000. "Optimal operation of a CHP plant for space heating as a peak load regulating plant," Energy, Elsevier, vol. 25(3), pages 283-298.
    2. Onovwiona, H.I. & Ugursal, V.I., 2006. "Residential cogeneration systems: review of the current technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 389-431, October.
    3. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    4. Lund, Henrik & Østergaard, Poul Alberg, 2000. "Electric grid and heat planning scenarios with centralised and distributed sources of conventional, CHP and wind generation," Energy, Elsevier, vol. 25(4), pages 299-312.
    5. Peng, T. & Lu, H.F. & Wu, W.L. & Campbell, D.E. & Zhao, G.S. & Zou, J.H. & Chen, J., 2008. "Should a small combined heat and power plant (CHP) open to its regional power and heat networks? Integrated economic, energy, and emergy evaluation of optimization plans for Jiufa CHP," Energy, Elsevier, vol. 33(3), pages 437-445.
    6. Khan, K. H. & Rasul, M. G. & Khan, M. M. K., 2004. "Energy conservation in buildings: cogeneration and cogeneration coupled with thermal energy storage," Applied Energy, Elsevier, vol. 77(1), pages 15-34, January.
    7. Berta, Gian Luigi & Prato, Alessandro Pini & Garbarino, Luca, 2006. "Design criteria for distributed cogeneration plants," Energy, Elsevier, vol. 31(10), pages 1403-1416.
    8. Alanne, Kari & Saari, Arto, 2004. "Sustainable small-scale CHP technologies for buildings: the basis for multi-perspective decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(5), pages 401-431, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Manuel Salmerón Lissén & Laura Romero Rodríguez & Francisco Durán Parejo & Francisco José Sánchez de la Flor, 2018. "An Economic, Energy, and Environmental Analysis of PV/Micro-CHP Hybrid Systems: A Case Study of a Tertiary Building," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    2. Sarabchi, N. & Khoshbakhti Saray, R. & Mahmoudi, S.M.S., 2013. "Utilization of waste heat from a HCCI (homogeneous charge compression ignition) engine in a tri-generation system," Energy, Elsevier, vol. 55(C), pages 965-976.
    3. Ronelly De Souza & Melchiorre Casisi & Diego Micheli & Mauro Reini, 2021. "A Review of Small–Medium Combined Heat and Power (CHP) Technologies and Their Role within the 100% Renewable Energy Systems Scenario," Energies, MDPI, vol. 14(17), pages 1-30, August.
    4. Baidya, Durjoy & de Brito, Marco Antonio Rodrigues & Ghoreishi-Madiseh, Seyed Ali, 2020. "Techno-economic feasibility investigation of incorporating an energy storage with an exhaust heat recovery system for underground mines in cold climatic regions," Applied Energy, Elsevier, vol. 273(C).
    5. Luis Olmos-Villalba & Bernardo Herrera & Anderson Gallego & Karen Cacua, 2019. "Experimental Evaluation of a Diesel Cogeneration System for Producing Power and Drying Aromatic Herbs," Sustainability, MDPI, vol. 11(18), pages 1-12, September.
    6. Sanaye, Sepehr & Mohammadi Nasab, Amir, 2012. "Modeling and optimizing a CHP system for natural gas pressure reduction plant," Energy, Elsevier, vol. 40(1), pages 358-369.
    7. Romero Rodríguez, Laura & Salmerón Lissén, José Manuel & Sánchez Ramos, José & Rodríguez Jara, Enrique Ángel & Álvarez Domínguez, Servando, 2016. "Analysis of the economic feasibility and reduction of a building’s energy consumption and emissions when integrating hybrid solar thermal/PV/micro-CHP systems," Applied Energy, Elsevier, vol. 165(C), pages 828-838.
    8. Afzali, Sayyed Faridoddin & Mahalec, Vladimir, 2018. "Novel performance curves to determine optimal operation of CCHP systems," Applied Energy, Elsevier, vol. 226(C), pages 1009-1036.
    9. Myat, Aung & Thu, Kyaw & Kim, Young Deuk & Saha, Bidyut Baran & Choon Ng, Kim, 2012. "Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants," Energy, Elsevier, vol. 46(1), pages 493-521.
    10. Rachtan, W. & Malinowski, L., 2013. "An approximate expression for part-load performance of a microturbine combined heat and power system heat recovery unit," Energy, Elsevier, vol. 51(C), pages 146-153.
    11. Li, Yaohong & Tian, Ran & Wei, Mingshan, 2022. "Operation strategy for interactive CCHP system based on energy complementary characteristics of diverse operation strategies," Applied Energy, Elsevier, vol. 310(C).
    12. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    13. Horvath, Christopher & Hwang, Yunho & Radermacher, Reinhard & Gerstler, William & Tang, Ching-Jen, 2014. "Waste heat and electrically driven hybrid cooling systems for a high ambient temperature, off-grid application," Energy, Elsevier, vol. 66(C), pages 711-721.
    14. Kazemi-Beydokhti, Amin & Zeinali Heris, Saeed, 2012. "Thermal optimization of combined heat and power (CHP) systems using nanofluids," Energy, Elsevier, vol. 44(1), pages 241-247.
    15. Alka Mihelić-Bogdanić & Ivana Špelić, 2022. "Energy Efficiency Optimization in Polyisoprene Footwear Production," Sustainability, MDPI, vol. 14(17), pages 1-26, August.
    16. Afzali, Sayyed Faridoddin & Cotton, James S. & Mahalec, Vladimir, 2020. "Urban community energy systems design under uncertainty for specified levels of carbon dioxide emissions," Applied Energy, Elsevier, vol. 259(C).
    17. Bahlouli, Keyvan & Khoshbakhti Saray, Rahim, 2016. "Energetic and exergetic analyses of a new energy system for heating and power production purposes," Energy, Elsevier, vol. 106(C), pages 390-399.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fragaki, Aikaterini & Andersen, Anders N. & Toke, David, 2008. "Exploration of economical sizing of gas engine and thermal store for combined heat and power plants in the UK," Energy, Elsevier, vol. 33(11), pages 1659-1670.
    2. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    3. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
    4. Kwon, Pil Seok & Østergaard, Poul, 2014. "Assessment and evaluation of flexible demand in a Danish future energy scenario," Applied Energy, Elsevier, vol. 134(C), pages 309-320.
    5. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    6. Fumo, Nelson & Mago, Pedro J. & Chamra, Louay M., 2009. "Emission operational strategy for combined cooling, heating, and power systems," Applied Energy, Elsevier, vol. 86(11), pages 2344-2350, November.
    7. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Jiecheng Zhu & Xitian Wang & Da Xie & Chenghong Gu, 2019. "Control Strategy for MGT Generation System Optimized by Improved WOA to Enhance Demand Response Capability," Energies, MDPI, vol. 12(16), pages 1-20, August.
    9. Iacobescu, Flavius & Badescu, Viorel, 2011. "Metamorphoses of cogeneration-based district heating in Romania: A case study," Energy Policy, Elsevier, vol. 39(1), pages 269-280, January.
    10. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    11. Sanaye, Sepehr & Ardali, Moslem Raessi, 2009. "Estimating the power and number of microturbines in small-scale combined heat and power systems," Applied Energy, Elsevier, vol. 86(6), pages 895-903, June.
    12. Compernolle, Tine & Witters, Nele & Van Passel, Steven & Thewys, Theo, 2011. "Analyzing a self-managed CHP system for greenhouse cultivation as a profitable way to reduce CO2-emissions," Energy, Elsevier, vol. 36(4), pages 1940-1947.
    13. Chesi, Andrea & Ferrara, Giovanni & Ferrari, Lorenzo & Magnani, Sandro & Tarani, Fabio, 2013. "Influence of the heat storage size on the plant performance in a Smart User case study," Applied Energy, Elsevier, vol. 112(C), pages 1454-1465.
    14. Ferreira, Ana C.M. & Nunes, Manuel L. & Teixeira, Senhorinha F.C.F. & Leão, Celina P. & Silva, Ângela M. & Teixeira, José C.F. & Martins, Luís A.S.B., 2012. "An economic perspective on the optimisation of a small-scale cogeneration system for the Portuguese scenario," Energy, Elsevier, vol. 45(1), pages 436-444.
    15. Xu, Jianzhong & Sui, Jun & Li, Bingyu & Yang, Minlin, 2010. "Research, development and the prospect of combined cooling, heating, and power systems," Energy, Elsevier, vol. 35(11), pages 4361-4367.
    16. González-Pino, I. & Pérez-Iribarren, E. & Campos-Celador, A. & Las-Heras-Casas, J. & Sala, J.M., 2015. "Influence of the regulation framework on the feasibility of a Stirling engine-based residential micro-CHP installation," Energy, Elsevier, vol. 84(C), pages 575-588.
    17. Kwon, Pil Seok & Østergaard, Poul Alberg, 2013. "Priority order in using biomass resources – Energy systems analyses of future scenarios for Denmark," Energy, Elsevier, vol. 63(C), pages 86-94.
    18. Sofia Boulmrharj & Mohammed Khaidar & Mohamed Bakhouya & Radouane Ouladsine & Mostapha Siniti & Khalid Zine-dine, 2020. "Performance Assessment of a Hybrid System with Hydrogen Storage and Fuel Cell for Cogeneration in Buildings," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    19. Franki, Vladimir & Višković, Alfredo, 2015. "Energy security, policy and technology in South East Europe: Presenting and applying an energy security index to Croatia," Energy, Elsevier, vol. 90(P1), pages 494-507.
    20. Jukka Heinonen & Jani Laine & Karoliina Pluuman & Eeva-Sofia Säynäjoki & Risto Soukka & Seppo Junnila, 2015. "Planning for a Low Carbon Future? Comparing Heat Pumps and Cogeneration as the Energy System Options for a New Residential Area," Energies, MDPI, vol. 8(9), pages 1-18, August.

    More about this item

    Keywords

    CHP; Cogeneration; Energy saving; ICE;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:4:p:1848-1853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.