Development of a Dual Fuel ICE-Based Micro-CHP System and Experimental Evaluation of Its Performance at Light Loads Using Natural Gas as Primary Fuel
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- O'Connell, N. & Röll, A. & Lechner, R. & Luo, T. & Brautsch, M., 2019. "PODE-blend as pilot fuel in a biomethane dual fuel engine: Experimental analysis of performance, combustion and emissions characteristics," Renewable Energy, Elsevier, vol. 143(C), pages 101-111.
- Zheng, C.Y. & Wu, J.Y. & Zhai, X.Q. & Yang, G. & Wang, R.Z., 2016. "Experimental and modeling investigation of an ICE (internal combustion engine) based micro-cogeneration device considering overheat protection controls," Energy, Elsevier, vol. 101(C), pages 447-461.
- Onovwiona, H.I. & Ugursal, V.I., 2006. "Residential cogeneration systems: review of the current technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 389-431, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
- Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
- Daniel Cardoso & Daniel Nunes & João Faria & Paulo Fael & Pedro D. Gaspar, 2023. "Intelligent Micro-Cogeneration Systems for Residential Grids: A Sustainable Solution for Efficient Energy Management," Energies, MDPI, vol. 16(13), pages 1-21, July.
- Wang, Xuan & Shu, Gequn & Tian, Hua & Wang, Rui & Cai, Jinwen, 2020. "Operation performance comparison of CCHP systems with cascade waste heat recovery systems by simulation and operation optimisation," Energy, Elsevier, vol. 206(C).
- Gonzalo Romero Garcia & Dora Villada Castillo & Jhan Piero Rojas, 2022. "A Complete Prefeasibility Evaluation of On-Site Energy Generation Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 474-479, March.
- Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
- Facci, Andrea L. & Cigolotti, Viviana & Jannelli, Elio & Ubertini, Stefano, 2017. "Technical and economic assessment of a SOFC-based energy system for combined cooling, heating and power," Applied Energy, Elsevier, vol. 192(C), pages 563-574.
- Brouwer, Anne Sjoerd & Kuramochi, Takeshi & van den Broek, Machteld & Faaij, André, 2013. "Fulfilling the electricity demand of electric vehicles in the long term future: An evaluation of centralized and decentralized power supply systems," Applied Energy, Elsevier, vol. 107(C), pages 33-51.
- Wang, Y. & Barde, A. & Jin, K. & Wirz, R.E., 2020. "System performance analyses of sulfur-based thermal energy storage," Energy, Elsevier, vol. 195(C).
- Fux, Samuel F. & Benz, Michael J. & Guzzella, Lino, 2013. "Economic and environmental aspects of the component sizing for a stand-alone building energy system: A case study," Renewable Energy, Elsevier, vol. 55(C), pages 438-447.
- Maria Zuba-Ciszewska & Aneta Suchoń, 2024. "The Role of State Aid in the Achievement of the Energy Efficiency Objective in the Food Industry—The Example of Poland," Energies, MDPI, vol. 17(12), pages 1-32, June.
- Gómez, Antonio & Zubizarreta, Javier & Rodrigues, Marcos & Dopazo, César & Fueyo, Norberto, 2010. "Potential and cost of electricity generation from human and animal waste in Spain," Renewable Energy, Elsevier, vol. 35(2), pages 498-505.
- Karimi, Ali & Gimelli, Alfredo & Iossa, Raffaele & Muccillo, Massimiliano, 2024. "Techno-economic simulation and sensitivity analysis of modular cogeneration with organic rankine cycle and battery energy storage system for enhanced energy performance," Energy, Elsevier, vol. 295(C).
- Lombardi, K. & Ugursal, V.I. & Beausoleil-Morrison, I., 2010. "Proposed improvements to a model for characterizing the electrical and thermal energy performance of Stirling engine micro-cogeneration devices based upon experimental observations," Applied Energy, Elsevier, vol. 87(10), pages 3271-3282, October.
- Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
- Iacobescu, Flavius & Badescu, Viorel, 2011. "Metamorphoses of cogeneration-based district heating in Romania: A case study," Energy Policy, Elsevier, vol. 39(1), pages 269-280, January.
- Shabanpour-Haghighi, Amin & Seifi, Ali Reza, 2016. "Effects of district heating networks on optimal energy flow of multi-carrier systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 379-387.
- Praveen Cheekatamarla & Ahmad Abu-Heiba, 2020. "A Comprehensive Review and Qualitative Analysis of Micro-Combined Heat and Power Modeling Approaches," Energies, MDPI, vol. 13(14), pages 1-26, July.
- Wakui, Tetsuya & Yokoyama, Ryohei, 2012. "Optimal sizing of residential SOFC cogeneration system for power interchange operation in housing complex from energy-saving viewpoint," Energy, Elsevier, vol. 41(1), pages 65-74.
- Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
More about this item
Keywords
micro-cogeneration; heat recovery; dual fuel engine; substitution level; natural gas; efficiency; electronic control;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6281-:d:1228051. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.