IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v61y2013icp496-512.html
   My bibliography  Save this article

A methodology for understanding the impacts of large-scale penetration of micro-combined heat and power

Author

Listed:
  • Tapia-Ahumada, K.
  • Pérez-Arriaga, I.J.
  • Moniz, E.J.

Abstract

Co-generation at small kW-e scale has been stimulated in recent years by governments and energy regulators as one way to increasing energy efficiency and reducing CO2 emissions. If a widespread adoption should be realized, their effects from a system's point of view are crucial to understand the contributions of this technology. Based on a methodology that uses long-term capacity planning expansion, this paper explores some of the implications for an electric power system of having a large number of micro-CHPs. Results show that fuel cells-based micro-CHPs have the best and most consistent performance for different residential demands from the customer and system's perspectives. As the penetration increases at important levels, gas-based technologies—particularly combined cycle units—are displaced in capacity and production, which impacts the operation of the electric system during summer peak hours. Other results suggest that the tariff design impacts the economic efficiency of the system and the operation of micro-CHPs under a price-based strategy. Finally, policies aimed at micro-CHPs should consider the suitability of the technology (in size and heat-to-power ratio) to meet individual demands, the operational complexities of a large penetration, and the adequacy of the economic signals to incentivize an efficient and sustainable operation.

Suggested Citation

  • Tapia-Ahumada, K. & Pérez-Arriaga, I.J. & Moniz, E.J., 2013. "A methodology for understanding the impacts of large-scale penetration of micro-combined heat and power," Energy Policy, Elsevier, vol. 61(C), pages 496-512.
  • Handle: RePEc:eee:enepol:v:61:y:2013:i:c:p:496-512
    DOI: 10.1016/j.enpol.2013.06.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513004953
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.06.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Houwing, Michiel & Ajah, Austin N. & Heijnen, Petra W. & Bouwmans, Ivo & Herder, Paulien M., 2008. "Uncertainties in the design and operation of distributed energy resources: The case of micro-CHP systems," Energy, Elsevier, vol. 33(10), pages 1518-1536.
    2. Onovwiona, H.I. & Ugursal, V.I., 2006. "Residential cogeneration systems: review of the current technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 389-431, October.
    3. Cossent, Rafael & Gómez, Tomás & Frías, Pablo, 2009. "Towards a future with large penetration of distributed generation: Is the current regulation of electricity distribution ready? Regulatory recommendations under a European perspective," Energy Policy, Elsevier, vol. 37(3), pages 1145-1155, March.
    4. Peacock, A.D. & Newborough, M., 2006. "Impact of micro-combined heat-and-power systems on energy flows in the UK electricity supply industry," Energy, Elsevier, vol. 31(12), pages 1804-1818.
    5. Hawkes, A.D. & Leach, M.A., 2008. "On policy instruments for support of micro combined heat and power," Energy Policy, Elsevier, vol. 36(8), pages 2963-2972, August.
    6. Gulli, Francesco, 2006. "Small distributed generation versus centralised supply: a social cost-benefit analysis in the residential and service sectors," Energy Policy, Elsevier, vol. 34(7), pages 804-832, May.
    7. Strachan, Neil & Dowlatabadi, Hadi, 2002. "Distributed generation and distribution utilities," Energy Policy, Elsevier, vol. 30(8), pages 649-661, June.
    8. Hawkes, A.D. & Leach, M.A., 2008. "The capacity credit of micro-combined heat and power," Energy Policy, Elsevier, vol. 36(4), pages 1457-1469, April.
    9. Batlle, C. & Rodilla, P., 2010. "A critical assessment of the different approaches aimed to secure electricity generation supply," Energy Policy, Elsevier, vol. 38(11), pages 7169-7179, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vishwanathan, Gokul & Sculley, Julian P. & Fischer, Adam & Zhao, Ji-Cheng, 2018. "Techno-economic analysis of high-efficiency natural-gas generators for residential combined heat and power," Applied Energy, Elsevier, vol. 226(C), pages 1064-1075.
    2. Goop, Joel & Nyholm, Emil & Odenberger, Mikael & Johnsson, Filip, 2021. "Impact of electricity market feedback on investments in solar photovoltaic and battery systems in Swedish single-family dwellings," Renewable Energy, Elsevier, vol. 163(C), pages 1078-1091.
    3. Adam, Alexandros & Fraga, Eric S. & Brett, Dan J.L., 2018. "A modelling study for the integration of a PEMFC micro-CHP in domestic building services design," Applied Energy, Elsevier, vol. 225(C), pages 85-97.
    4. Li, Jianwei & Wang, Xudong & Zhang, Zhenyu & Le Blond, Simon & Yang, Qingqing & Zhang, Min & Yuan, Weijia, 2017. "Analysis of a new design of the hybrid energy storage system used in the residential m-CHP systems," Applied Energy, Elsevier, vol. 187(C), pages 169-179.
    5. Goop, Joel & Odenberger, Mikael & Johnsson, Filip, 2016. "Distributed solar and wind power – Impact on distribution losses," Energy, Elsevier, vol. 112(C), pages 273-284.
    6. Vijay, Avinash & Hawkes, Adam, 2018. "Impact of dynamic aspects on economics of fuel cell based micro co-generation in low carbon futures," Energy, Elsevier, vol. 155(C), pages 874-886.
    7. Pinto, Edwin S. & Serra, Luis M. & Lázaro, Ana, 2020. "Evaluation of methods to select representative days for the optimization of polygeneration systems," Renewable Energy, Elsevier, vol. 151(C), pages 488-502.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lombardi, K. & Ugursal, V.I. & Beausoleil-Morrison, I., 2010. "Proposed improvements to a model for characterizing the electrical and thermal energy performance of Stirling engine micro-cogeneration devices based upon experimental observations," Applied Energy, Elsevier, vol. 87(10), pages 3271-3282, October.
    2. Athawale, Rasika & Felder, Frank A. & Goldman, Leo A., 2016. "Do Combined Heat and Power plants perform? Case study of publicly funded projects in New York," Energy Policy, Elsevier, vol. 97(C), pages 618-627.
    3. Chesi, Andrea & Ferrara, Giovanni & Ferrari, Lorenzo & Magnani, Sandro & Tarani, Fabio, 2013. "Influence of the heat storage size on the plant performance in a Smart User case study," Applied Energy, Elsevier, vol. 112(C), pages 1454-1465.
    4. González-Pino, I. & Pérez-Iribarren, E. & Campos-Celador, A. & Las-Heras-Casas, J. & Sala, J.M., 2015. "Influence of the regulation framework on the feasibility of a Stirling engine-based residential micro-CHP installation," Energy, Elsevier, vol. 84(C), pages 575-588.
    5. Bird, Trevor J. & Jain, Neera, 2020. "Dynamic modeling and validation of a micro-combined heat and power system with integrated thermal energy storage," Applied Energy, Elsevier, vol. 271(C).
    6. Allan, Grant & Eromenko, Igor & Gilmartin, Michelle & Kockar, Ivana & McGregor, Peter, 2015. "The economics of distributed energy generation: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 543-556.
    7. Guillermo Rey & Carlos Ulloa & Jose Luis Míguez & Elena Arce, 2016. "Development of an ICE-Based Micro-CHP System Based on a Stirling Engine; Methodology for a Comparative Study of its Performance and Sensitivity Analysis in Recreational Sailing Boats in Different Euro," Energies, MDPI, vol. 9(4), pages 1-14, March.
    8. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    9. John Foster & Liam Wagner & Phil Wild & Junhua Zhao & Lucas Skoofa & Craig Froome, 2011. "Market and Economic Modelling of the Intelligent Grid: End of Year Report 2009," Energy Economics and Management Group Working Papers 09, School of Economics, University of Queensland, Australia.
    10. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    11. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Xiong, Wen & Wang, Li, 2017. "Typical scenario set generation algorithm for an integrated energy system based on the Wasserstein distance metric," Energy, Elsevier, vol. 135(C), pages 153-170.
    12. Lai, Sau Man & Hui, Chi Wai, 2009. "Feasibility and flexibility for a trigeneration system," Energy, Elsevier, vol. 34(10), pages 1693-1704.
    13. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Current utilization of microturbines as a part of a hybrid system in distributed generation technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 142-152.
    14. Daniel Cardoso & Daniel Nunes & João Faria & Paulo Fael & Pedro D. Gaspar, 2023. "Intelligent Micro-Cogeneration Systems for Residential Grids: A Sustainable Solution for Efficient Energy Management," Energies, MDPI, vol. 16(13), pages 1-21, July.
    15. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    16. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2016. "Air transport and high-speed rail competition: Environmental implications and mitigation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 261-276.
    17. Nolan, Sheila & Neu, Olivier & O’Malley, Mark, 2017. "Capacity value estimation of a load-shifting resource using a coupled building and power system model," Applied Energy, Elsevier, vol. 192(C), pages 71-82.
    18. Calvillo, C.F. & Sánchez-Miralles, A. & Villar, J. & Martín, F., 2016. "Optimal planning and operation of aggregated distributed energy resources with market participation," Applied Energy, Elsevier, vol. 182(C), pages 340-357.
    19. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.
    20. Gonzalo Romero Garcia & Dora Villada Castillo & Jhan Piero Rojas, 2022. "A Complete Prefeasibility Evaluation of On-Site Energy Generation Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 474-479, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:61:y:2013:i:c:p:496-512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.