My bibliography
Save this item
The M4 Competition: Results, findings, conclusion and way forward
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pantelis Agathangelou & Demetris Trihinas & Ioannis Katakis, 2020. "A Multi-Factor Analysis of Forecasting Methods: A Study on the M4 Competition," Data, MDPI, vol. 5(2), pages 1-24, April.
- Smyl, Slawek, 2020. "A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting," International Journal of Forecasting, Elsevier, vol. 36(1), pages 75-85.
- Pauwels, Laurent & Radchenko, Peter & Vasnev, Andrey, 2019.
"Higher Moment Constraints for Predictive Density Combinations,"
Working Papers
BAWP-2019-01, University of Sydney Business School, Discipline of Business Analytics.
- Pauwels, Laurent & Radchenko, Peter & Vasnev, Andrey, 2020. "Higher Moment Constraints for Predictive Density Combinations," Working Papers BAWP-2020-01, University of Sydney Business School, Discipline of Business Analytics.
- Luca Massidda & Marino Marrocu, 2018. "Smart Meter Forecasting from One Minute to One Year Horizons," Energies, MDPI, vol. 11(12), pages 1-16, December.
- Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
- Andrea Kolková & Aleksandr Kljuènikov, 2021. "Demand forecasting: an alternative approach based on technical indicator Pbands," Oeconomia Copernicana, Institute of Economic Research, vol. 12(4), pages 1063-1094, December.
- Taleb, Nassim Nicholas, 2020. "On the statistical differences between binary forecasts and real-world payoffs," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1228-1240.
- Xi Wu & Adam Blake, 2023. "Does the combination of models with different explanatory variables improve tourism demand forecasting performance?," Tourism Economics, , vol. 29(8), pages 2032-2056, December.
- Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
- Bi, Jian-Wu & Liu, Yang & Li, Hui, 2020. "Daily tourism volume forecasting for tourist attractions," Annals of Tourism Research, Elsevier, vol. 83(C).
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- Putz, Dominik & Gumhalter, Michael & Auer, Hans, 2021. "A novel approach to multi-horizon wind power forecasting based on deep neural architecture," Renewable Energy, Elsevier, vol. 178(C), pages 494-505.
- Seaman, Brian & Bowman, John, 2022. "Applicability of the M5 to Forecasting at Walmart," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1468-1472.
- Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
- Andrea Kolková & Petr Rozehnal, 2022. "Hybrid demand forecasting models: pre-pandemic and pandemic use studies," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(3), pages 699-725, September.
- Jason Wittenbach & Brian d'Alessandro & C. Bayan Bruss, 2020. "Machine Learning for Temporal Data in Finance: Challenges and Opportunities," Papers 2009.05636, arXiv.org.
- Magnus, Jan R. & Vasnev, Andrey L., 2023.
"On the uncertainty of a combined forecast: The critical role of correlation,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1895-1908.
- Magnus, Jan & Vasnev, Andrey, 2021. "On the uncertainty of a combined forecast: The critical role of correlation," Working Papers BAWP-2022-01, University of Sydney Business School, Discipline of Business Analytics.
- Pawlikowski, Maciej & Chorowska, Agata, 2020. "Weighted ensemble of statistical models," International Journal of Forecasting, Elsevier, vol. 36(1), pages 93-97.
- Clements, Adam & Vasnev, Andrey, 2021. "Forecast combination puzzle in the HAR model," Working Papers BAWP-2021-01, University of Sydney Business School, Discipline of Business Analytics.
- Philippe St-Aubin & Bruno Agard, 2022. "Precision and Reliability of Forecasts Performance Metrics," Forecasting, MDPI, vol. 4(4), pages 1-22, October.
- Sbrana, Giacomo & Silvestrini, Andrea, 2022. "Random coefficient state-space model: Estimation and performance in M3–M4 competitions," International Journal of Forecasting, Elsevier, vol. 38(1), pages 352-366.
- Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
- Paulo Canas Rodrigues & Olushina Olawale Awe & Jonatha Sousa Pimentel & Rahim Mahmoudvand, 2020. "Modelling the Behaviour of Currency Exchange Rates with Singular Spectrum Analysis and Artificial Neural Networks," Stats, MDPI, vol. 3(2), pages 1-21, June.
- Weronika Nitka & Rafał Weron, 2023.
"Combining predictive distributions of electricity prices. Does minimizing the CRPS lead to optimal decisions in day-ahead bidding?,"
Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(3), pages 105-118.
- Weronika Nitka & Rafa{l} Weron, 2023. "Combining predictive distributions of electricity prices: Does minimizing the CRPS lead to optimal decisions in day-ahead bidding?," Papers 2308.15443, arXiv.org.
- Zhen Zeng & Tucker Balch & Manuela Veloso, 2021. "Deep Video Prediction for Time Series Forecasting," Papers 2102.12061, arXiv.org, revised Nov 2021.
- Andrey Davydenko & Paul Goodwin, 2021. "Bewertung der Verzerrung von Punktprognosen über mehrere Zeitreihen hinweg: Maßnahmen und visuelle Werkzeuge [Assessing point forecast bias across multiple time series: Measures and visual tools]," Post-Print hal-03359179, HAL.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
- Fiorucci, Jose Augusto & Louzada, Francisco, 2020. "GROEC: Combination method via Generalized Rolling Origin Evaluation," International Journal of Forecasting, Elsevier, vol. 36(1), pages 105-109.
- Kang, Yanfei & Cao, Wei & Petropoulos, Fotios & Li, Feng, 2022. "Forecast with forecasts: Diversity matters," European Journal of Operational Research, Elsevier, vol. 301(1), pages 180-190.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & Jeon, Jooyoung, 2021. "Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals," International Journal of Forecasting, Elsevier, vol. 37(2), pages 547-568.
- Thiyanga S. Talagala & Feng Li & Yanfei Kang, 2019. "Feature-based Forecast-Model Performance Prediction," Monash Econometrics and Business Statistics Working Papers 21/19, Monash University, Department of Econometrics and Business Statistics.
- Nassim Nicholas Taleb, 2019. "On the Statistical Differences between Binary Forecasts and Real World Payoffs," Papers 1907.11162, arXiv.org, revised Dec 2019.
- Ingel, Anti & Shahroudi, Novin & Kängsepp, Markus & Tättar, Andre & Komisarenko, Viacheslav & Kull, Meelis, 2020. "Correlated daily time series and forecasting in the M4 competition," International Journal of Forecasting, Elsevier, vol. 36(1), pages 121-128.
- Erjiang E & Ming Yu & Xin Tian & Ye Tao, 2022. "Dynamic Model Selection Based on Demand Pattern Classification in Retail Sales Forecasting," Mathematics, MDPI, vol. 10(17), pages 1-16, September.
- Zhang, Hongwei & Zhao, Xinyi & Gao, Wang & Niu, Zibo, 2023. "The role of higher moments in predicting China's oil futures volatility: Evidence from machine learning models," Journal of Commodity Markets, Elsevier, vol. 32(C).
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Karamaziotis, Panagiotis I. & Raptis, Achilleas & Nikolopoulos, Konstantinos & Litsiou, Konstantia & Assimakopoulos, Vassilis, 2020. "An empirical investigation of water consumption forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(2), pages 588-606.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
- Jonas R. Brehmer & Tilmann Gneiting, 2020. "Properization: constructing proper scoring rules via Bayes acts," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 659-673, June.
- Romanus, Eduardo E. & Silva, Eugênio & Goldschmidt, Ronaldo R., 2024. "Empirical probabilistic forecasting: An approach solely based on deterministic explanatory variables for the selection of past forecast errors," International Journal of Forecasting, Elsevier, vol. 40(1), pages 184-201.
- Robert L. Winkler & Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose, 2019. "Probability Forecasts and Their Combination: A Research Perspective," Decision Analysis, INFORMS, vol. 16(4), pages 239-260, December.
- Yanfei Kang & Rob J Hyndman & Feng Li, 2018. "Efficient generation of time series with diverse and controllable characteristics," Monash Econometrics and Business Statistics Working Papers 15/18, Monash University, Department of Econometrics and Business Statistics.
- David Kozak & Scott Holladay & Gregory E. Fasshauer, 2019. "Intraday Load Forecasts with Uncertainty," Energies, MDPI, vol. 12(10), pages 1-26, May.
- Godahewa, Rakshitha & Bergmeir, Christoph & Webb, Geoffrey I. & Montero-Manso, Pablo, 2023. "An accurate and fully-automated ensemble model for weekly time series forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 641-658.
- Wei Qian & Craig A. Rolling & Gang Cheng & Yuhong Yang, 2019. "On the Forecast Combination Puzzle," Econometrics, MDPI, vol. 7(3), pages 1-26, September.
- Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
- Ma, Shaohui & Fildes, Robert, 2020. "Forecasting third-party mobile payments with implications for customer flow prediction," International Journal of Forecasting, Elsevier, vol. 36(3), pages 739-760.
- Philip Hans Franses, 2020.
"IMA(1,1) as a new benchmark for forecast evaluation,"
Applied Economics Letters, Taylor & Francis Journals, vol. 27(17), pages 1419-1423, October.
- Franses, Ph.H.B.F., 2019. "IMA(1,1) as a new benchmark for forecast evaluation," Econometric Institute Research Papers EI2019-28, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Srijan Sood & Zhen Zeng & Naftali Cohen & Tucker Balch & Manuela Veloso, 2020. "Visual Time Series Forecasting: An Image-driven Approach," Papers 2011.09052, arXiv.org, revised Nov 2021.
- Qian, Wei & Rolling, Craig A. & Cheng, Gang & Yang, Yuhong, 2022. "Combining forecasts for universally optimal performance," International Journal of Forecasting, Elsevier, vol. 38(1), pages 193-208.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
- Wang, Yihe & Zhao, Sihai Dave, 2021. "A nonparametric empirical Bayes approach to large-scale multivariate regression," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
- Bryan Lim & Stefan Zohren & Stephen Roberts, 2019. "Enhancing Time Series Momentum Strategies Using Deep Neural Networks," Papers 1904.04912, arXiv.org, revised Sep 2020.
- Taylor, James W., 2021. "Evaluating quantile-bounded and expectile-bounded interval forecasts," International Journal of Forecasting, Elsevier, vol. 37(2), pages 800-811.
- Voyant, Cyril & Notton, Gilles & Duchaud, Jean-Laurent & Gutiérrez, Luis Antonio García & Bright, Jamie M. & Yang, Dazhi, 2022. "Benchmarks for solar radiation time series forecasting," Renewable Energy, Elsevier, vol. 191(C), pages 747-762.
- Talagala, Thiyanga S. & Li, Feng & Kang, Yanfei, 2022. "FFORMPP: Feature-based forecast model performance prediction," International Journal of Forecasting, Elsevier, vol. 38(3), pages 920-943.
- Adriano Koshiyama & Nick Firoozye & Philip Treleaven, 2021.
"Generative adversarial networks for financial trading strategies fine-tuning and combination,"
Quantitative Finance, Taylor & Francis Journals, vol. 21(5), pages 797-813, May.
- Adriano Koshiyama & Nick Firoozye & Philip Treleaven, 2019. "Generative Adversarial Networks for Financial Trading Strategies Fine-Tuning and Combination," Papers 1901.01751, arXiv.org, revised Mar 2019.
- Wellens, Arnoud P. & Udenio, Maxi & Boute, Robert N., 2022. "Transfer learning for hierarchical forecasting: Reducing computational efforts of M5 winning methods," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1482-1491.
- Petropoulos, Fotios & Svetunkov, Ivan, 2020. "A simple combination of univariate models," International Journal of Forecasting, Elsevier, vol. 36(1), pages 110-115.
- Georges, Christophre & Pereira, Javier, 2021. "Market stability with machine learning agents," Journal of Economic Dynamics and Control, Elsevier, vol. 122(C).
- Radchenko, Peter & Vasnev, Andrey L. & Wang, Wendun, 2023.
"Too similar to combine? On negative weights in forecast combination,"
International Journal of Forecasting, Elsevier, vol. 39(1), pages 18-38.
- Radchenko, Peter & Vasnev, Andrey & Wang, Wendun, 2020. "Too similar to combine? On negative weights in forecast combination," Working Papers BAWP-2020-02, University of Sydney Business School, Discipline of Business Analytics.
- Legaki, Nikoletta-Zampeta & Karpouzis, Kostas & Assimakopoulos, Vassilios & Hamari, Juho, 2021. "Gamification to avoid cognitive biases: An experiment of gamifying a forecasting course," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
- Richard Bean, 2023. "Forecasting the Monash Microgrid for the IEEE-CIS Technical Challenge," Energies, MDPI, vol. 16(3), pages 1-23, January.
- Qingfeng Liu & Andrey L. Vasnev, 2019. "A Combination Method for Averaging OLS and GLS Estimators," Econometrics, MDPI, vol. 7(3), pages 1-12, September.
- Angelo Garangau Menezes & Saulo Martiello Mastelini, 2021. "MegazordNet: combining statistical and machine learning standpoints for time series forecasting," Papers 2107.01017, arXiv.org.
- José V. Segura-Heras & José D. Bermúdez & Ana Corberán-Vallet & Enriqueta Vercher, 2022. "Analysis of Weighting Strategies for Improving the Accuracy of Combined Forecasts," Mathematics, MDPI, vol. 10(5), pages 1-12, February.
- Lu, Xinjie & Ma, Feng & Xu, Jin & Zhang, Zehui, 2022. "Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Ioannis Papageorgiou & Ioannis Kontoyiannis, 2023. "The Bayesian Context Trees State Space Model for time series modelling and forecasting," Papers 2308.00913, arXiv.org, revised Oct 2023.
- Jaganathan, Srihari & Prakash, P.K.S., 2020. "A combination-based forecasting method for the M4-competition," International Journal of Forecasting, Elsevier, vol. 36(1), pages 98-104.
- Spiliotis, Evangelos & Kouloumos, Andreas & Assimakopoulos, Vassilios & Makridakis, Spyros, 2020. "Are forecasting competitions data representative of the reality?," International Journal of Forecasting, Elsevier, vol. 36(1), pages 37-53.
- Nikolopoulos, Konstantinos, 2021. "We need to talk about intermittent demand forecasting," European Journal of Operational Research, Elsevier, vol. 291(2), pages 549-559.
- Daniel Cunha Oliveira & Yutong Lu & Xi Lin & Mihai Cucuringu & Andre Fujita, 2024. "Causality-Inspired Models for Financial Time Series Forecasting," Papers 2408.09960, arXiv.org.
- Yannik Hahn & Tristan Langer & Richard Meyes & Tobias Meisen, 2023. "Time Series Dataset Survey for Forecasting with Deep Learning," Forecasting, MDPI, vol. 5(1), pages 1-21, March.
- Andrey Davydenko & Paul Goodwin, 2021. "Assessing Point Forecast Bias Across Multiple Time Series: Measures and Visual Tools," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(5), pages 1-46, September.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2021. "Point and interval forecasting of electricity supply via pruned ensembles," Energy, Elsevier, vol. 232(C).
- Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2023. "Shrinkage estimator for exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1351-1365.
- Sebastian M. Blanc & Thomas Setzer, 2020. "Bias–Variance Trade-Off and Shrinkage of Weights in Forecast Combination," Management Science, INFORMS, vol. 66(12), pages 5720-5737, December.
- Spiliotis, Evangelos & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2019. "Tales from tails: On the empirical distributions of forecasting errors and their implication to risk," International Journal of Forecasting, Elsevier, vol. 35(2), pages 687-698.
- Erol Eğrioğlu & Robert Fildes, 2022. "A New Bootstrapped Hybrid Artificial Neural Network Approach for Time Series Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 59(4), pages 1355-1383, April.
- Huber, Jakob & Stuckenschmidt, Heiner, 2021. "Intraday shelf replenishment decision support for perishable goods," International Journal of Production Economics, Elsevier, vol. 231(C).
- Alain Zemkoho, 2023. "A Basic Time Series Forecasting Course with Python," SN Operations Research Forum, Springer, vol. 4(1), pages 1-43, March.
- Shaub, David, 2020. "Fast and accurate yearly time series forecasting with forecast combinations," International Journal of Forecasting, Elsevier, vol. 36(1), pages 116-120.