Causality-Inspired Models for Financial Time Series Forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017.
"Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500,"
European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2016. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," FAU Discussion Papers in Economics 03/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Christopher Krauss & Xuan Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01515120, HAL.
- Andrew W. Lo, A. Craig MacKinlay, 1988.
"Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test,"
The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
- Andrew W. Lo & A. Craig MacKinlay, 1987. "Stock Market Prices Do Not Follow Random Walks: Evidence From a Simple Specification Test," NBER Working Papers 2168, National Bureau of Economic Research, Inc.
- John Y. Campbell & Samuel B. Thompson, 2008.
"Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
- Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000.
"Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation,"
Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
- Andrew Lo & Harry Mamaysky & Jiang Wang, 1999. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Computing in Economics and Finance 1999 402, Society for Computational Economics.
- Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," NBER Working Papers 7613, National Bureau of Economic Research, Inc.
- Andrew Ang & Geert Bekaert, 2007.
"Stock Return Predictability: Is it There?,"
The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
- Andrew Ang & Geert Bekaert, 2001. "Stock Return Predictability: Is it There?," NBER Working Papers 8207, National Bureau of Economic Research, Inc.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014.
"Forecasting the Equity Risk Premium: The Role of Technical Indicators,"
Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2010. "Out-of-sample equity premium prediction: economic fundamentals vs. moving-average rules," Working Papers 2010-008, Federal Reserve Bank of St. Louis.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2011. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Working Papers CoFie-02-2011, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Neftci, Salih N, 1991. "Naive Trading Rules in Financial Markets and Wiener-Kolmogorov Prediction Theory: A Study of "Technical Analysis."," The Journal of Business, University of Chicago Press, vol. 64(4), pages 549-571, October.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2018. "The M4 Competition: Results, findings, conclusion and way forward," International Journal of Forecasting, Elsevier, vol. 34(4), pages 802-808.
- Kothari, S. P. & Shanken, Jay, 1997. "Book-to-market, dividend yield, and expected market returns: A time-series analysis," Journal of Financial Economics, Elsevier, vol. 44(2), pages 169-203, May.
- R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
- John Y. Campbell, Robert J. Shiller, 1988.
"The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors,"
The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
- John Y. Campbell & Robert J. Shiller, 1986. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," NBER Working Papers 2100, National Bureau of Economic Research, Inc.
- Robert J. Shiller & John Y. Campbell, 1986. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," Cowles Foundation Discussion Papers 812, Cowles Foundation for Research in Economics, Yale University.
- Campbell, John Y. & Yogo, Motohiro, 2006.
"Efficient tests of stock return predictability,"
Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
- John Y. Campbell & Motohiro Yogo, 2002. "Efficient Tests of Stock Return Predictability," Harvard Institute of Economic Research Working Papers 1972, Harvard - Institute of Economic Research.
- John Y. Campbell & Motohiro Yogo, 2003. "Efficient Tests of Stock Return Predictability," NBER Working Papers 10026, National Bureau of Economic Research, Inc.
- Campbell, John & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Scholarly Articles 3122601, Harvard University Department of Economics.
- Fama, Eugene F. & Schwert, G. William, 1977. "Asset returns and inflation," Journal of Financial Economics, Elsevier, vol. 5(2), pages 115-146, November.
- James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
- Niklas Pfister & Peter Bühlmann & Jonas Peters, 2019. "Invariant Causal Prediction for Sequential Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1264-1276, July.
- Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2002. "Order imbalance, liquidity, and market returns," Journal of Financial Economics, Elsevier, vol. 65(1), pages 111-130, July.
- Çakmaklı, Cem & van Dijk, Dick, 2016. "Getting the most out of macroeconomic information for predicting excess stock returns," International Journal of Forecasting, Elsevier, vol. 32(3), pages 650-668.
- Rama Cont & Mihai Cucuringu & Chao Zhang, 2023. "Cross-impact of order flow imbalance in equity markets," Quantitative Finance, Taylor & Francis Journals, vol. 23(10), pages 1373-1393, October.
- Mark J. Flannery & Aris A. Protopapadakis, 2002. "Macroeconomic Factors Do Influence Aggregate Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 15(3), pages 751-782.
- Rama Cont & Mihai Cucuringu & Chao Zhang, 2021. "Cross-Impact of Order Flow Imbalance in Equity Markets," Papers 2112.13213, arXiv.org, revised Jun 2023.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019.
"Manager sentiment and stock returns,"
Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
- Fuwei Jiang & Joshua Lee & Xiumin Martin & Guofu Zhou, 2019. "Manager sentiment and stock returns," CEMA Working Papers 677, China Economics and Management Academy, Central University of Finance and Economics.
- Lansing, Kevin J. & LeRoy, Stephen F. & Ma, Jun, 2022.
"Examining the sources of excess return predictability: Stochastic volatility or market inefficiency?,"
Journal of Economic Behavior & Organization, Elsevier, vol. 197(C), pages 50-72.
- Kevin J. Lansing & Stephen F. LeRoy & Jun Ma, 2022. "Examining the Sources of Excess Return Predictability: Stochastic Volatility or Market Inefficiency?," Working Paper Series 2018-14, Federal Reserve Bank of San Francisco.
- Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
- Mykola Babiak & Jozef Barunik, 2020.
"Deep Learning, Predictability, and Optimal Portfolio Returns,"
CERGE-EI Working Papers
wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," Papers 2009.03394, arXiv.org, revised Jul 2021.
- Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2023. "Gold risk premium estimation with machine learning methods," Journal of Commodity Markets, Elsevier, vol. 31(C).
- Dong, Dayong & Yue, Sishi & Cao, Jiawei, 2020. "Site visit information content and return predictability: Evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
- Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018.
"Long Run Returns Predictability and Volatility with Moving Averages,"
Risks, MDPI, vol. 6(4), pages 1-18, September.
- Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Documentos de Trabajo del ICAE 2018-25, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Chang, C-L. & Ilomäki, J. & Laurila, H. & McAleer, M.J., 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Econometric Institute Research Papers EI2018-39, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Yu, Deshui & Huang, Difang & Chen, Li, 2023. "Stock return predictability and cyclical movements in valuation ratios," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 36-53.
- Park, Dojoon & Hahn, Jaehoon & Eom, Young Ho, 2024. "Predicting the equity premium with financial ratios: A comprehensive look over a long period in Korea," Pacific-Basin Finance Journal, Elsevier, vol. 84(C).
- Smith, Simon C., 2021. "International stock return predictability," International Review of Financial Analysis, Elsevier, vol. 78(C).
- Wachter, Jessica A. & Warusawitharana, Missaka, 2009.
"Predictable returns and asset allocation: Should a skeptical investor time the market?,"
Journal of Econometrics, Elsevier, vol. 148(2), pages 162-178, February.
- Jessica A. Wachter & Missaka Warusawitharana, 2006. "Predictable returns and asset allocation: Should a skeptical investor time the market?," 2006 Meeting Papers 22, Society for Economic Dynamics.
- Jessica A. Wachter & Missaka Warusawitharana, 2007. "Predictable Returns and Asset Allocation: Should a Skeptical Investor Time the Market?," NBER Working Papers 13165, National Bureau of Economic Research, Inc.
- Lin, Qi, 2018. "Technical analysis and stock return predictability: An aligned approach," Journal of Financial Markets, Elsevier, vol. 38(C), pages 103-123.
- Yu, Jialin, 2011. "Disagreement and return predictability of stock portfolios," Journal of Financial Economics, Elsevier, vol. 99(1), pages 162-183, January.
- Jurdi, Doureige & Kim, Jae, 2019. "Predicting the U.S. Stock Market Return: Evidence from the Improved Augmented Regression Method," MPRA Paper 94028, University Library of Munich, Germany.
- Qi Liu & Libin Tao & Weixing Wu & Jianfeng Yu, 2017. "Short- and Long-Run Business Conditions and Expected Returns," Management Science, INFORMS, vol. 63(12), pages 4137-4157, December.
- Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
- Zhang, Yaojie & Wang, Yudong, 2023. "Forecasting crude oil futures market returns: A principal component analysis combination approach," International Journal of Forecasting, Elsevier, vol. 39(2), pages 659-673.
- Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
- Ilaria Piatti & Fabio Trojani, 2020.
"Dividend Growth Predictability and the Price–Dividend Ratio,"
Management Science, INFORMS, vol. 66(1), pages 130-158, January.
- Ilaria Piatti & Fabio Trojani, 2012. "Dividend Growth Predictability and the Price-Dividend Ratio," Swiss Finance Institute Research Paper Series 12-42, Swiss Finance Institute.
- repec:grz:wpaper:2012-02 is not listed on IDEAS
- Gonçalo Faria & Fabio Verona, 2016.
"Forecasting the equity risk premium with frequency-decomposed predictors,"
Working Papers de Economia (Economics Working Papers)
06, Católica Porto Business School, Universidade Católica Portuguesa.
- Faria, Gonçalo & Verona, Fabio, 2017. "Forecasting the equity risk premium with frequency-decomposed predictors," Bank of Finland Research Discussion Papers 1/2017, Bank of Finland.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ETS-2024-09-30 (Econometric Time Series)
- NEP-FOR-2024-09-30 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.09960. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.