A novel approach to multi-horizon wind power forecasting based on deep neural architecture
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2021.06.099
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Smyl, Slawek, 2020. "A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting," International Journal of Forecasting, Elsevier, vol. 36(1), pages 75-85.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2018. "The M4 Competition: Results, findings, conclusion and way forward," International Journal of Forecasting, Elsevier, vol. 34(4), pages 802-808.
- Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
- Huiting Zheng & Jiabin Yuan & Long Chen, 2017. "Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation," Energies, MDPI, vol. 10(8), pages 1-20, August.
- Zhao, Pan & Wang, Jiangfeng & Xia, Junrong & Dai, Yiping & Sheng, Yingxin & Yue, Jie, 2012. "Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China," Renewable Energy, Elsevier, vol. 43(C), pages 234-241.
- Celik, Ali N. & Kolhe, Mohan, 2013. "Generalized feed-forward based method for wind energy prediction," Applied Energy, Elsevier, vol. 101(C), pages 582-588.
- Wang, Jian-Zhou & Wang, Yun & Jiang, Ping, 2015. "The study and application of a novel hybrid forecasting model – A case study of wind speed forecasting in China," Applied Energy, Elsevier, vol. 143(C), pages 472-488.
- Manzano-Agugliaro, F. & Alcayde, A. & Montoya, F.G. & Zapata-Sierra, A. & Gil, C., 2013. "Scientific production of renewable energies worldwide: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 134-143.
- Hernandez-Escobedo, Quetzalcoatl & Manzano-Agugliaro, Francisco & Gazquez-Parra, Jose Antonio & Zapata-Sierra, Antonio, 2011. "Is the wind a periodical phenomenon? The case of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 721-728, January.
- Sanchez, Ismael, 2006. "Short-term prediction of wind energy production," International Journal of Forecasting, Elsevier, vol. 22(1), pages 43-56.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bentsen, Lars Ødegaard & Warakagoda, Narada Dilp & Stenbro, Roy & Engelstad, Paal, 2023. "Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures," Applied Energy, Elsevier, vol. 333(C).
- Liu, Wencheng & Mao, Zhizhong, 2024. "Short-term photovoltaic power forecasting with feature extraction and attention mechanisms," Renewable Energy, Elsevier, vol. 226(C).
- Zhang, Chu & Ji, Chunlei & Hua, Lei & Ma, Huixin & Nazir, Muhammad Shahzad & Peng, Tian, 2022. "Evolutionary quantile regression gated recurrent unit network based on variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction," Renewable Energy, Elsevier, vol. 197(C), pages 668-682.
- de Azevedo Takara, Lucas & Teixeira, Ana Clara & Yazdanpanah, Hamed & Mariani, Viviana Cocco & dos Santos Coelho, Leandro, 2024. "Optimizing multi-step wind power forecasting: Integrating advanced deep neural networks with stacking-based probabilistic learning," Applied Energy, Elsevier, vol. 369(C).
- Krishna Rayi, Vijaya & Mishra, S.P. & Naik, Jyotirmayee & Dash, P.K., 2022. "Adaptive VMD based optimized deep learning mixed kernel ELM autoencoder for single and multistep wind power forecasting," Energy, Elsevier, vol. 244(PA).
- Hu, Miaosen & Zheng, Guoqiang & Su, Zhonge & Kong, Lingrui & Wang, Guodong, 2024. "Short-term wind power prediction based on improved variational modal decomposition, least absolute shrinkage and selection operator, and BiGRU networks," Energy, Elsevier, vol. 303(C).
- Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
- Juan Manuel González Sopeña & Vikram Pakrashi & Bidisha Ghosh, 2022. "A Spiking Neural Network Based Wind Power Forecasting Model for Neuromorphic Devices," Energies, MDPI, vol. 15(19), pages 1-24, October.
- Jiang, Sufan & Wu, Chuanshen & Gao, Shan & Pan, Guangsheng & Liu, Yu & Zhao, Xin & Wang, Sicheng, 2022. "Robust frequency risk-constrained unit commitment model for AC-DC system considering wind uncertainty," Renewable Energy, Elsevier, vol. 195(C), pages 395-406.
- Jing Wan & Jiehui Huang & Zhiyuan Liao & Chunquan Li & Peter X. Liu, 2022. "A Multi-View Ensemble Width-Depth Neural Network for Short-Term Wind Power Forecasting," Mathematics, MDPI, vol. 10(11), pages 1-20, May.
- Ejigu Tefera Habtemariam & Kula Kekeba & María Martínez-Ballesteros & Francisco Martínez-Álvarez, 2023. "A Bayesian Optimization-Based LSTM Model for Wind Power Forecasting in the Adama District, Ethiopia," Energies, MDPI, vol. 16(5), pages 1-22, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Oreshkin, Boris N. & Dudek, Grzegorz & Pełka, Paweł & Turkina, Ekaterina, 2021. "N-BEATS neural network for mid-term electricity load forecasting," Applied Energy, Elsevier, vol. 293(C).
- Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
- Montoya, Francisco G. & García-Cruz, Amós & Montoya, Maria G. & Manzano-Agugliaro, Francisco, 2016. "Power quality techniques research worldwide: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 846-856.
- Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
- Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
- Andrea Kolková & Aleksandr Kljuènikov, 2021. "Demand forecasting: an alternative approach based on technical indicator Pbands," Oeconomia Copernicana, Institute of Economic Research, vol. 12(4), pages 1063-1094, December.
- Duan, Jikai & Zuo, Hongchao & Bai, Yulong & Duan, Jizheng & Chang, Mingheng & Chen, Bolong, 2021. "Short-term wind speed forecasting using recurrent neural networks with error correction," Energy, Elsevier, vol. 217(C).
- Wellens, Arnoud P. & Udenio, Maxi & Boute, Robert N., 2022. "Transfer learning for hierarchical forecasting: Reducing computational efforts of M5 winning methods," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1482-1491.
- Qiang Zhao & Kunkun Bao & Jia Wang & Yinghua Han & Jinkuan Wang, 2019. "An Online Hybrid Model for Temperature Prediction of Wind Turbine Gearbox Components," Energies, MDPI, vol. 12(20), pages 1-20, October.
- Nima Amjady & Oveis Abedinia, 2017. "Short Term Wind Power Prediction Based on Improved Kriging Interpolation, Empirical Mode Decomposition, and Closed-Loop Forecasting Engine," Sustainability, MDPI, vol. 9(11), pages 1-18, November.
- José V. Segura-Heras & José D. Bermúdez & Ana Corberán-Vallet & Enriqueta Vercher, 2022. "Analysis of Weighting Strategies for Improving the Accuracy of Combined Forecasts," Mathematics, MDPI, vol. 10(5), pages 1-12, February.
- Godahewa, Rakshitha & Bergmeir, Christoph & Webb, Geoffrey I. & Montero-Manso, Pablo, 2023. "An accurate and fully-automated ensemble model for weekly time series forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 641-658.
- Hao Chen & Qiulan Wan & Yurong Wang, 2014. "Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models," Energies, MDPI, vol. 7(7), pages 1-14, July.
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
- Mohamed Chaouch, 2023. "Probabilistic Wind Speed Forecasting for Wind Turbine Allocation in the Power Grid," Energies, MDPI, vol. 16(22), pages 1-15, November.
- Hernández-Escobedo, Q. & Saldaña-Flores, R. & Rodríguez-García, E.R. & Manzano-Agugliaro, F., 2014. "Wind energy resource in Northern Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 890-914.
- Jiang, Haiyan & Wang, Jianzhou & Wu, Jie & Geng, Wei, 2017. "Comparison of numerical methods and metaheuristic optimization algorithms for estimating parameters for wind energy potential assessment in low wind regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1199-1217.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Pantelis Agathangelou & Demetris Trihinas & Ioannis Katakis, 2020. "A Multi-Factor Analysis of Forecasting Methods: A Study on the M4 Competition," Data, MDPI, vol. 5(2), pages 1-24, April.
More about this item
Keywords
Wind power forecasting; Neural networks; Deep learning; N-BEATS; Pinball-sMAPE;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:178:y:2021:i:c:p:494-505. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.