IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1833-d231133.html
   My bibliography  Save this article

Intraday Load Forecasts with Uncertainty

Author

Listed:
  • David Kozak

    (Department of Applied Mathematics and Statistics, Colorado School Mines, Golden, CO 80401, USA)

  • Scott Holladay

    (Department of Economics, Haslam School of Business, University of Tennessee, Knoxville, TN 37916, USA)

  • Gregory E. Fasshauer

    (Department of Applied Mathematics and Statistics, Colorado School Mines, Golden, CO 80401, USA)

Abstract

We provide a comprehensive framework for forecasting five minute load using Gaussian processes with a positive definite kernel specifically designed for load forecasts. Gaussian processes are probabilistic, enabling us to draw samples from a posterior distribution and provide rigorous uncertainty estimates to complement the point forecast, an important benefit for forecast consumers. As part of the modeling process, we discuss various methods for dimension reduction and explore their use in effectively incorporating weather data to the load forecast. We provide guidance for every step of the modeling process, from model construction through optimization and model combination. We provide results on data from the largest deregulated wholesale U.S. electricity market for various periods in 2018. The process is transparent, mathematically motivated, and reproducible. The resulting model provides a probability density of five minute forecasts for 24 h.

Suggested Citation

  • David Kozak & Scott Holladay & Gregory E. Fasshauer, 2019. "Intraday Load Forecasts with Uncertainty," Energies, MDPI, vol. 12(10), pages 1-26, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1833-:d:231133
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1833/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1833/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    2. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2018. "The M4 Competition: Results, findings, conclusion and way forward," International Journal of Forecasting, Elsevier, vol. 34(4), pages 802-808.
    3. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
    4. Hong, Tao & Wang, Pu & White, Laura, 2015. "Weather station selection for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 31(2), pages 286-295.
    5. Weron, R. & Kozłowska, B. & Nowicka-Zagrajek, J., 2001. "Modeling electricity loads in California: a continuous-time approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 344-350.
    6. Joanna Nowicka-Zagrajek & Rafal Weron, 2002. "Modeling electricity loads in California: ARMA models with hyperbolic noise," HSC Research Reports HSC/02/02, Hugo Steinhaus Center, Wroclaw University of Technology.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristina Hora & Florin Ciprian Dan & Gabriel Bendea & Calin Secui, 2022. "Residential Short-Term Load Forecasting during Atypical Consumption Behavior," Energies, MDPI, vol. 15(1), pages 1-15, January.
    2. Taorong Jia & Lixiao Yao & Guoqing Yang & Qi He, 2022. "A Short-Term Power Load Forecasting Method of Based on the CEEMDAN-MVO-GRU," Sustainability, MDPI, vol. 14(24), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Pu & Liu, Bidong & Hong, Tao, 2016. "Electric load forecasting with recency effect: A big data approach," International Journal of Forecasting, Elsevier, vol. 32(3), pages 585-597.
    2. Moreno-Carbonell, Santiago & Sánchez-Úbeda, Eugenio F. & Muñoz, Antonio, 2020. "Rethinking weather station selection for electric load forecasting using genetic algorithms," International Journal of Forecasting, Elsevier, vol. 36(2), pages 695-712.
    3. Kamal Chapagain & Somsak Kittipiyakul, 2018. "Performance Analysis of Short-Term Electricity Demand with Atmospheric Variables," Energies, MDPI, vol. 11(4), pages 1-34, April.
    4. Smyl, Slawek, 2020. "A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting," International Journal of Forecasting, Elsevier, vol. 36(1), pages 75-85.
    5. Pappas, S.Sp. & Ekonomou, L. & Karamousantas, D.Ch. & Chatzarakis, G.E. & Katsikas, S.K. & Liatsis, P., 2008. "Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models," Energy, Elsevier, vol. 33(9), pages 1353-1360.
    6. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    7. Weronika Nitka & Rafał Weron, 2023. "Combining predictive distributions of electricity prices. Does minimizing the CRPS lead to optimal decisions in day-ahead bidding?," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(3), pages 105-118.
    8. Luo, Jian & Hong, Tao & Gao, Zheming & Fang, Shu-Cherng, 2023. "A robust support vector regression model for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 1005-1020.
    9. de Hoog, Julian & Abdulla, Khalid, 2019. "Data visualization and forecast combination for probabilistic load forecasting in GEFCom2017 final match," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1451-1459.
    10. Huber, Julian & Dann, David & Weinhardt, Christof, 2020. "Probabilistic forecasts of time and energy flexibility in battery electric vehicle charging," Applied Energy, Elsevier, vol. 262(C).
    11. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting: Part II — Probabilistic forecasting," Energy Economics, Elsevier, vol. 79(C), pages 171-182.
    12. Stefano Bianchi & Allegra De Filippo & Sandro Magnani & Gabriele Mosaico & Federico Silvestro, 2021. "VIRTUS Project: A Scalable Aggregation Platform for the Intelligent Virtual Management of Distributed Energy Resources," Energies, MDPI, vol. 14(12), pages 1-31, June.
    13. Lu, Xiaoxing & Li, Kangping & Xu, Hanchen & Wang, Fei & Zhou, Zhenyu & Zhang, Yagang, 2020. "Fundamentals and business model for resource aggregator of demand response in electricity markets," Energy, Elsevier, vol. 204(C).
    14. Alfredo Nespoli & Emanuele Ogliari & Silvia Pretto & Michele Gavazzeni & Sonia Vigani & Franco Paccanelli, 2021. "Electrical Load Forecast by Means of LSTM: The Impact of Data Quality," Forecasting, MDPI, vol. 3(1), pages 1-11, February.
    15. Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    16. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1533-1547.
    17. Lintao Yang & Honggeng Yang & Haitao Liu, 2018. "GMDH-Based Semi-Supervised Feature Selection for Electricity Load Classification Forecasting," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
    18. Nametala, Ciniro Aparecido Leite & Faria, Wandry Rodrigues & Lage, Guilherme Guimarães & Pereira, Benvindo Rodrigues, 2023. "Analysis of hourly price granularity implementation in the Brazilian deregulated electricity contracting environment," Utilities Policy, Elsevier, vol. 81(C).
    19. Luca Massidda & Marino Marrocu, 2018. "Smart Meter Forecasting from One Minute to One Year Horizons," Energies, MDPI, vol. 11(12), pages 1-16, December.
    20. Maciejowska, Katarzyna & Nowotarski, Jakub, 2016. "A hybrid model for GEFCom2014 probabilistic electricity price forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1051-1056.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1833-:d:231133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.