IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v31y2003i10p961-976.html
   My bibliography  Save this item

Global energy scenarios meeting stringent CO2 constraints--cost-effective fuel choices in the transportation sector

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Schafer, Andreas, 2012. "Introducing behavioral change in transportation into energy/economy/environment models," Policy Research Working Paper Series 6234, The World Bank.
  2. Park, Young-Kwon & Yoo, Myung Lang & Lee, Hyung Won & Park, Sung Hoon & Jung, Sang-Chul & Park, Sang-Sook & Kim, Sang-Chai, 2012. "Effects of operation conditions on pyrolysis characteristics of agricultural residues," Renewable Energy, Elsevier, vol. 42(C), pages 125-130.
  3. Maria Grahn & Erica Klampfl & Margaret Whalen & Timothy Wallington, 2013. "Sustainable Mobility: Using a Global Energy Model to Inform Vehicle Technology Choices in a Decarbonized Economy," Sustainability, MDPI, vol. 5(5), pages 1-18, April.
  4. Akerman, Jonas & Hojer, Mattias, 2006. "How much transport can the climate stand?--Sweden on a sustainable path in 2050," Energy Policy, Elsevier, vol. 34(14), pages 1944-1957, September.
  5. Chen, Huayi & Ma, Tieju, 2021. "Technology adoption and carbon emissions with dynamic trading among heterogeneous agents," Energy Economics, Elsevier, vol. 99(C).
  6. Chen, Huayi & Ma, Tieju, 2017. "Optimizing systematic technology adoption with heterogeneous agents," European Journal of Operational Research, Elsevier, vol. 257(1), pages 287-296.
  7. Malico, Isabel & Nepomuceno Pereira, Ricardo & Gonçalves, Ana Cristina & Sousa, Adélia M.O., 2019. "Current status and future perspectives for energy production from solid biomass in the European industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 960-977.
  8. Ishtiaq Ahmed & Muhammad Anjum Zia & Huma Afzal & Shaheez Ahmed & Muhammad Ahmad & Zain Akram & Farooq Sher & Hafiz M. N. Iqbal, 2021. "Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy," Sustainability, MDPI, vol. 13(8), pages 1-32, April.
  9. Andersson, E. & Harvey, S., 2007. "Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass," Energy, Elsevier, vol. 32(4), pages 399-405.
  10. Bilgili, Faik, 2012. "Linear and nonlinear TAR panel unit root analyses for solid biomass energy supply of European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6775-6781.
  11. Shabani, Nazanin & Akhtari, Shaghaygh & Sowlati, Taraneh, 2013. "Value chain optimization of forest biomass for bioenergy production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 299-311.
  12. Johansson, Daniella & Rootzén, Johan & Berntsson, Thore & Johnsson, Filip, 2012. "Assessment of strategies for CO2 abatement in the European petroleum refining industry," Energy, Elsevier, vol. 42(1), pages 375-386.
  13. Joelsson, Jonas & Gustavsson, Leif, 2012. "Swedish biomass strategies to reduce CO2 emission and oil use in an EU context," Energy, Elsevier, vol. 43(1), pages 448-468.
  14. Al-Ghandoor, Ahmed & Jaber, Jamal & Al-Hinti, Ismael & Abdallat, Yousef, 2013. "Statistical assessment and analyses of the determinants of transportation sector gasoline demand in Jordan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 129-138.
  15. Millinger, M. & Reichenberg, L. & Hedenus, F. & Berndes, G. & Zeyen, E. & Brown, T., 2022. "Are biofuel mandates cost-effective? - An analysis of transport fuels and biomass usage to achieve emissions targets in the European energy system," Applied Energy, Elsevier, vol. 326(C).
  16. Jeong, Hae-Yong & Kim, Young-In & Lee, Yong-Bum & Ha, Kwi-Seok & Won, Byung-Chool & Lee, Dong-Uk & Hahn, Dohee, 2010. "A 'must-go path' scenario for sustainable development and the role of nuclear energy in the 21st century," Energy Policy, Elsevier, vol. 38(4), pages 1962-1968, April.
  17. Chen, Yuche & Zhang, Yunteng & Fan, Yueyue & Hu, Kejia & Zhao, Jianyou, 2017. "A dynamic programming approach for modeling low-carbon fuel technology adoption considering learning-by-doing effect," Applied Energy, Elsevier, vol. 185(P1), pages 825-835.
  18. Peeters, Paul & Dubois, Ghislain, 2010. "Tourism travel under climate change mitigation constraints," Journal of Transport Geography, Elsevier, vol. 18(3), pages 447-457.
  19. Peter Read, 2006. "Reconciling Emissions Trading with a Technology-Based Response to Potential Abrupt Climate Change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 493-511, March.
  20. Takayuki Takeshita & Kenji Yamaji, 2006. "Potential contribution of coal to the future global energy system," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 8(1), pages 55-87, December.
  21. Wetterlund, Elisabeth & Pettersson, Karin & Harvey, Simon, 2011. "Systems analysis of integrating biomass gasification with pulp and paper production – Effects on economic performance, CO2 emissions and energy use," Energy, Elsevier, vol. 36(2), pages 932-941.
  22. Spalding-Fecher, Randall & Joyce, Brian & Winkler, Harald, 2017. "Climate change and hydropower in the Southern African Power Pool and Zambezi River Basin: System-wide impacts and policy implications," Energy Policy, Elsevier, vol. 103(C), pages 84-97.
  23. Cherubini, Francesco & Bird, Neil D. & Cowie, Annette & Jungmeier, Gerfried & Schlamadinger, Bernhard & Woess-Gallasch, Susanne, 2009. "Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations," Resources, Conservation & Recycling, Elsevier, vol. 53(8), pages 434-447.
  24. Martinsen, Dag & Funk, Carolin & Linssen, Jochen, 2010. "Biomass for transportation fuels--A cost-effective option for the German energy supply?," Energy Policy, Elsevier, vol. 38(1), pages 128-140, January.
  25. Robèrt, Markus & Hultén, Per & Frostell, Björn, 2007. "Biofuels in the energy transition beyond peak oil," Energy, Elsevier, vol. 32(11), pages 2089-2098.
  26. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
  27. Yedla, Sudhakar & Shrestha, Ram M. & Anandarajah, Gabrial, 2005. "Environmentally sustainable urban transportation--comparative analysis of local emission mitigation strategies vis-a-vis GHG mitigation strategies," Transport Policy, Elsevier, vol. 12(3), pages 245-254, May.
  28. Tokimatsu, Koji & Konishi, Satoshi & Ishihara, Keiichi & Tezuka, Tetsuo & Yasuoka, Rieko & Nishio, Masahiro, 2016. "Role of innovative technologies under the global zero emissions scenarios," Applied Energy, Elsevier, vol. 162(C), pages 1483-1493.
  29. Persson, Tobias A. & Azar, Christian & Lindgren, Kristian, 2006. "Allocation of CO2 emission permits--Economic incentives for emission reductions in developing countries," Energy Policy, Elsevier, vol. 34(14), pages 1889-1899, September.
  30. Kyle, Page & Kim, Son H., 2011. "Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands," Energy Policy, Elsevier, vol. 39(5), pages 3012-3024, May.
  31. Sanden, Bjorn A. & Azar, Christian, 2005. "Near-term technology policies for long-term climate targets--economy wide versus technology specific approaches," Energy Policy, Elsevier, vol. 33(12), pages 1557-1576, August.
  32. Nils Boysen & Florian Jaehn & Erwin Pesch, 2011. "Scheduling Freight Trains in Rail-Rail Transshipment Yards," Transportation Science, INFORMS, vol. 45(2), pages 199-211, May.
  33. Börjesson, Martin & Ahlgren, Erik O., 2010. "Biomass gasification in cost-optimized district heating systems--A regional modelling analysis," Energy Policy, Elsevier, vol. 38(1), pages 168-180, January.
  34. Johansson, Daniella & Franck, Per-Åke & Berntsson, Thore, 2012. "Hydrogen production from biomass gasification in the oil refining industry – A system analysis," Energy, Elsevier, vol. 38(1), pages 212-227.
  35. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Schmid, Erwin, 2011. "Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria," Energy Policy, Elsevier, vol. 39(6), pages 3261-3280, June.
  36. Audrey Laude, 2020. "Bioenergy with carbon capture and storage: are short-term issues set aside?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(2), pages 185-203, February.
  37. Severino Romano & Mario Cozzi & Francesco Di Napoli & Mauro Viccaro, 2013. "Building Agro-Energy Supply Chains in the Basilicata Region: Technical and Economic Evaluation of Interchangeability between Fossil and Renewable Energy Sources," Energies, MDPI, vol. 6(10), pages 1-24, October.
  38. Wetterlund, Elisabeth & Söderström, Mats, 2010. "Biomass gasification in district heating systems - The effect of economic energy policies," Applied Energy, Elsevier, vol. 87(9), pages 2914-2922, September.
  39. Takeshita, Takayuki & Yamaji, Kenji, 2008. "Important roles of Fischer-Tropsch synfuels in the global energy future," Energy Policy, Elsevier, vol. 36(8), pages 2791-2802, August.
  40. Lindfeldt, Erik G. & Westermark, Mats O., 2008. "System study of carbon dioxide (CO2) capture in bio-based motor fuel production," Energy, Elsevier, vol. 33(2), pages 352-361.
  41. Gül, Timur & Kypreos, Socrates & Turton, Hal & Barreto, Leonardo, 2009. "An energy-economic scenario analysis of alternative fuels for personal transport using the Global Multi-regional MARKAL model (GMM)," Energy, Elsevier, vol. 34(10), pages 1423-1437.
  42. Jonathan & M.O. Scurlock, 2005. "Biofuels for Transport in the Uk: What is Feasible?: Review/Commentary Article," Energy & Environment, , vol. 16(2), pages 273-282, March.
  43. Difs, Kristina, 2010. "National energy policies: Obstructing the reduction of global CO2 emissions? An analysis of Swedish energy policies for the district heating sector," Energy Policy, Elsevier, vol. 38(12), pages 7775-7782, December.
  44. Joelsson, Jonas M. & Gustavsson, Leif, 2012. "Reductions in greenhouse gas emissions and oil use by DME (di-methyl ether) and FT (Fischer-Tropsch) diesel production in chemical pulp mills," Energy, Elsevier, vol. 39(1), pages 363-374.
  45. Schafer, Andreas & Jacoby, Henry D., 2006. "Vehicle technology under CO2 constraint: a general equilibrium analysis," Energy Policy, Elsevier, vol. 34(9), pages 975-985, June.
  46. Berndes, Goran & Hansson, Julia, 2007. "Bioenergy expansion in the EU: Cost-effective climate change mitigation, employment creation and reduced dependency on imported fuels," Energy Policy, Elsevier, vol. 35(12), pages 5965-5979, December.
  47. Münnich Vass, Miriam, 2017. "Renewable energies cannot compete with forest carbon sequestration to cost-efficiently meet the EU carbon target for 2050," Renewable Energy, Elsevier, vol. 107(C), pages 164-180.
  48. Weiwei Xiong & Katsumasa Tanaka & Philippe Ciais & Daniel J. A. Johansson & Mariliis Lehtveer, 2022. "emIAM v1.0: an emulator for Integrated Assessment Models using marginal abatement cost curves," Papers 2212.12060, arXiv.org.
  49. Kwon, Pil Seok & Østergaard, Poul Alberg, 2013. "Priority order in using biomass resources – Energy systems analyses of future scenarios for Denmark," Energy, Elsevier, vol. 63(C), pages 86-94.
  50. Pietzcker, Robert C. & Longden, Thomas & Chen, Wenying & Fu, Sha & Kriegler, Elmar & Kyle, Page & Luderer, Gunnar, 2014. "Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models," Energy, Elsevier, vol. 64(C), pages 95-108.
  51. Bilgen, S., 2014. "Structure and environmental impact of global energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 890-902.
  52. Yuhong Wang & Xin Yao & Pengfei Yuan, 2015. "Strategic Adjustment of China’s Power Generation Capacity Structure Under the Constraint of Carbon Emission," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 421-435, October.
  53. Takayuki Takeshita, 2011. "Global Scenarios of Air Pollutant Emissions from Road Transport through to 2050," IJERPH, MDPI, vol. 8(7), pages 1-31, July.
  54. Fredrik Hedenus & Christian Azar & Kristian Lindgren, 2006. "Induced Technological Change in a Limited Foresight Optimization Model," The Energy Journal, , vol. 27(1_suppl), pages 109-122, January.
  55. Sudhakar Yedla, 2007. "Choosing between global and local emission control strategies in urban transport sector, which way to go?," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2007-009, Indira Gandhi Institute of Development Research, Mumbai, India.
  56. van Ruijven, Bas & de Vries, Bert & van Vuuren, Detlef P. & van der Sluijs, Jeroen P., 2010. "A global model for residential energy use: Uncertainty in calibration to regional data," Energy, Elsevier, vol. 35(1), pages 269-282.
  57. Hellsmark, Hans & Jacobsson, Staffan, 2012. "Realising the potential of gasified biomass in the European Union—Policy challenges in moving from demonstration plants to a larger scale diffusion," Energy Policy, Elsevier, vol. 41(C), pages 507-518.
  58. Takayuki Takeshita & Kenji Yamaji, 2006. "Potential contribution of coal to the future global energy system," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 8(1), pages 55-87, December.
  59. Sebastian Lubjuhn & Sandra Venghaus, 2024. "Unlocking the potential of the bioeconomy for climate change reduction: The optimal use of lignocellulosic biomass in Germany," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 144-159, February.
  60. Chen, Huayi & Ma, Tieju, 2014. "Technology adoption with limited foresight and uncertain technological learning," European Journal of Operational Research, Elsevier, vol. 239(1), pages 266-275.
  61. Laugs, Gideon A.H. & Moll, Henri C., 2017. "A review of the bandwidth and environmental discourses of future energy scenarios: Shades of green and gray," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 520-530.
  62. Hedenus, Fredrik & Azar, Christian, 2005. "Estimates of trends in global income and resource inequalities," Ecological Economics, Elsevier, vol. 55(3), pages 351-364, November.
  63. Hagos, Dejene Assefa & Gebremedhin, Alemayehu & Bolkesjø, Torjus Folsland, 2017. "The prospects of bioenergy in the future energy system of Inland Norway," Energy, Elsevier, vol. 121(C), pages 78-91.
  64. Chen, Huayi & Zhou, P., 2019. "Modeling systematic technology adoption: Can one calibrated representative agent represent heterogeneous agents?," Omega, Elsevier, vol. 89(C), pages 257-270.
  65. Densing, Martin & Turton, Hal & Bäuml, Georg, 2012. "Conditions for the successful deployment of electric vehicles – A global energy system perspective," Energy, Elsevier, vol. 47(1), pages 137-149.
  66. T. Persson, 2009. "Linking the Northeast states of the US mitigation program to the EU Emission Trading Scheme—Implications and costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(5), pages 399-408, June.
  67. Persson, Tobias A. & Azar, C. & Johansson, D. & Lindgren, K., 2007. "Major oil exporters may profit rather than lose, in a carbon-constrained world," Energy Policy, Elsevier, vol. 35(12), pages 6346-6353, December.
  68. Ghatak, Himadri Roy, 2011. "Biorefineries from the perspective of sustainability: Feedstocks, products, and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4042-4052.
  69. Audrey Laude, 2020. "Bioenergy with carbon capture and storage: are short-term issues set aside?," Post-Print hal-02163610, HAL.
  70. Jos#X00C9; Moreira, 2006. "Global Biomass Energy Potential," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 313-333, March.
  71. Meyer, I. & Leimbach, M. & Jaeger, C.C., 2007. "International passenger transport and climate change: A sector analysis in car demand and associated CO2 emissions from 2000 to 2050," Energy Policy, Elsevier, vol. 35(12), pages 6332-6345, December.
  72. Panos, Evangelos & Kannan, Ramachandran, 2016. "The role of domestic biomass in electricity, heat and grid balancing markets in Switzerland," Energy, Elsevier, vol. 112(C), pages 1120-1138.
  73. Sinha, Avik & Bhattacharya, Joysankar, 2017. "Estimation of environmental Kuznets curve for SO2 emission: A case of Indian cities," MPRA Paper 100009, University Library of Munich, Germany.
  74. Adahl, Anders & Harvey, Simon & Berntsson, Thore, 2006. "Assessing the value of pulp mill biomass savings in a climate change conscious economy," Energy Policy, Elsevier, vol. 34(15), pages 2330-2343, October.
  75. Jérôme Hilaire & Jan C. Minx & Max W. Callaghan & Jae Edmonds & Gunnar Luderer & Gregory F. Nemet & Joeri Rogelj & Maria Mar Zamora, 2019. "Negative emissions and international climate goals—learning from and about mitigation scenarios," Climatic Change, Springer, vol. 157(2), pages 189-219, November.
  76. Zhang, Runsen & Fujimori, Shinichiro & Dai, Hancheng & Hanaoka, Tatsuya, 2018. "Contribution of the transport sector to climate change mitigation: Insights from a global passenger transport model coupled with a computable general equilibrium model," Applied Energy, Elsevier, vol. 211(C), pages 76-88.
  77. Sudhakar Yedla, 2007. "Choosing between Global and Local Emission Control Strategies in Urban Transport Sector, Which way to go?," Development Economics Working Papers 22352, East Asian Bureau of Economic Research.
  78. Simone Speizer & Jay Fuhrman & Laura Aldrete Lopez & Mel George & Page Kyle & Seth Monteith & Haewon McJeon, 2024. "Integrated assessment modeling of a zero-emissions global transportation sector," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  79. Johansson, Bengt, 2009. "Will restrictions on CO2 emissions require reductions in transport demand?," Energy Policy, Elsevier, vol. 37(8), pages 3212-3220, August.
  80. Åhman, Max, 2010. "Biomethane in the transport sector--An appraisal of the forgotten option," Energy Policy, Elsevier, vol. 38(1), pages 208-217, January.
  81. Takeshita, Takayuki, 2012. "Assessing the co-benefits of CO2 mitigation on air pollutants emissions from road vehicles," Applied Energy, Elsevier, vol. 97(C), pages 225-237.
  82. Odenberger, M. & Johnsson, F., 2007. "Achieving 60% CO2 reductions within the UK energy system--Implications for the electricity generation sector," Energy Policy, Elsevier, vol. 35(4), pages 2433-2452, April.
  83. Nässén, Jonas & Holmberg, John, 2013. "On the potential trade-offs between energy supply and end-use technologies for residential heating," Energy Policy, Elsevier, vol. 59(C), pages 470-480.
  84. C. Wilson & A. Grubler & N. Bauer & V. Krey & K. Riahi, 2013. "Future capacity growth of energy technologies: are scenarios consistent with historical evidence?," Climatic Change, Springer, vol. 118(2), pages 381-395, May.
  85. Keppo, Ilkka & Strubegger, Manfred, 2010. "Short term decisions for long term problems – The effect of foresight on model based energy systems analysis," Energy, Elsevier, vol. 35(5), pages 2033-2042.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.