IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v239y2014i1p266-275.html
   My bibliography  Save this article

Technology adoption with limited foresight and uncertain technological learning

Author

Listed:
  • Chen, Huayi
  • Ma, Tieju

Abstract

Most previous optimization models on technology adoption assume perfect foresight over the long term. In reality, decision-makers do not have perfect foresight, and the endogenous driving force of technology adoption is uncertain. With a stylized optimization model, this paper explores the adoption of a new technology, its associated cost dynamics, and technological bifurcations with limited foresight and uncertain technological learning. The study shows that when modeling with limited foresight and technological learning, (1) the longer the length of the decision period, the earlier the adoption of a new technology, and the value of a foresight can be amplified with a high learning rate. However, when the decision period is beyond a certain length, further extending its length has little influence on adopting the new technology; (2) with limited foresight, decisions aiming at minimizing the total cost of each decision period will commonly result in a non-optimal solution from the perspective of the entire decision horizon; and (3) the range of technological bifurcation is much larger than that with perfect foresight, but uncertainty in technological learning tends to reduce the range by removing the early adoption paths of a new technology.

Suggested Citation

  • Chen, Huayi & Ma, Tieju, 2014. "Technology adoption with limited foresight and uncertain technological learning," European Journal of Operational Research, Elsevier, vol. 239(1), pages 266-275.
  • Handle: RePEc:eee:ejores:v:239:y:2014:i:1:p:266-275
    DOI: 10.1016/j.ejor.2014.03.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714002707
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.03.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chi, Chunjie & Ma, Tieju & Zhu, Bing, 2012. "Towards a low-carbon economy: Coping with technological bifurcations with a carbon tax," Energy Economics, Elsevier, vol. 34(6), pages 2081-2088.
    2. Messner, S. & Golodnikov, A. & Gritsevskii, A., 1996. "A stochastic version of the dynamic linear programming model MESSAGE III," Energy, Elsevier, vol. 21(9), pages 775-784.
    3. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    4. Fredrik Hedenus, Christian Azar and Kristian Lindgren, 2006. "Induced Technological Change in a Limited Foresight Optimization Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 109-122.
    5. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    6. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    7. Azar, Christian & Lindgren, Kristian & Andersson, Bjorn A., 2003. "Global energy scenarios meeting stringent CO2 constraints--cost-effective fuel choices in the transportation sector," Energy Policy, Elsevier, vol. 31(10), pages 961-976, August.
    8. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    9. Martinsen, Dag & Krey, Volker & Markewitz, Peter, 2007. "Implications of high energy prices for energy system and emissions--The response from an energy model for Germany," Energy Policy, Elsevier, vol. 35(9), pages 4504-4515, September.
    10. Geroski, P. A., 2000. "Models of technology diffusion," Research Policy, Elsevier, vol. 29(4-5), pages 603-625, April.
    11. Ma, T. & Grubler, A. & Nakamori, Y., 2009. "Modeling technology adoptions for sustainable development under increasing returns, uncertainty, and heterogeneous agents," European Journal of Operational Research, Elsevier, vol. 195(1), pages 296-306, May.
    12. Tieju Ma, 2010. "Coping with Uncertainties in Technological Learning," Management Science, INFORMS, vol. 56(1), pages 192-201, January.
    13. Leonardo Barreto, Socrates Kypreos, 2002. "Multi-regional technological learning in the energysystems MARKAL model," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 17(3), pages 189-213.
    14. Ma, Tieju & Nakamori, Yoshiteru, 2009. "Modeling technological change in energy systems – From optimization to agent-based modeling," Energy, Elsevier, vol. 34(7), pages 873-879.
    15. Keppo, Ilkka & Strubegger, Manfred, 2010. "Short term decisions for long term problems – The effect of foresight on model based energy systems analysis," Energy, Elsevier, vol. 35(5), pages 2033-2042.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Huayi & Ma, Tieju, 2021. "Technology adoption and carbon emissions with dynamic trading among heterogeneous agents," Energy Economics, Elsevier, vol. 99(C).
    2. Koppelaar, Rembrandt H.E.M. & Keirstead, James & Shah, Nilay & Woods, Jeremy, 2016. "A review of policy analysis purpose and capabilities of electricity system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1531-1544.
    3. Jessica Thomsen & Noha Saad Hussein & Arnold Dolderer & Christoph Kost, 2021. "Effect of the Foresight Horizon on Computation Time and Results Using a Regional Energy Systems Optimization Model," Energies, MDPI, vol. 14(2), pages 1-22, January.
    4. Chenhao Fang & Tieju Ma, 2021. "Technology adoption with carbon emission trading mechanism: modeling with heterogeneous agents and uncertain carbon price," Annals of Operations Research, Springer, vol. 300(2), pages 577-600, May.
    5. Chen, Huayi & Ma, Tieju, 2017. "Optimizing systematic technology adoption with heterogeneous agents," European Journal of Operational Research, Elsevier, vol. 257(1), pages 287-296.
    6. Ma, Tieju & Chen, Huayi, 2015. "Adoption of an emerging infrastructure with uncertain technological learning and spatial reconfiguration," European Journal of Operational Research, Elsevier, vol. 243(3), pages 995-1003.
    7. Chen, Huayi & Zhou, P., 2019. "Modeling systematic technology adoption: Can one calibrated representative agent represent heterogeneous agents?," Omega, Elsevier, vol. 89(C), pages 257-270.
    8. Lambert, Jerry & Hanel, Andreas & Fendt, Sebastian & Spliethoff, Hartmut, 2023. "Evaluation of sector-coupled energy systems using different foresight horizons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Huayi & Ma, Tieju, 2017. "Optimizing systematic technology adoption with heterogeneous agents," European Journal of Operational Research, Elsevier, vol. 257(1), pages 287-296.
    2. Chen, Huayi & Zhou, P., 2019. "Modeling systematic technology adoption: Can one calibrated representative agent represent heterogeneous agents?," Omega, Elsevier, vol. 89(C), pages 257-270.
    3. Chen, Huayi & Ma, Tieju, 2021. "Technology adoption and carbon emissions with dynamic trading among heterogeneous agents," Energy Economics, Elsevier, vol. 99(C).
    4. Ma, Tieju & Chen, Huayi, 2015. "Adoption of an emerging infrastructure with uncertain technological learning and spatial reconfiguration," European Journal of Operational Research, Elsevier, vol. 243(3), pages 995-1003.
    5. Chi, Chunjie & Ma, Tieju & Zhu, Bing, 2012. "Towards a low-carbon economy: Coping with technological bifurcations with a carbon tax," Energy Economics, Elsevier, vol. 34(6), pages 2081-2088.
    6. Tieju Ma, 2010. "Coping with Uncertainties in Technological Learning," Management Science, INFORMS, vol. 56(1), pages 192-201, January.
    7. Keppo, Ilkka & Strubegger, Manfred, 2010. "Short term decisions for long term problems – The effect of foresight on model based energy systems analysis," Energy, Elsevier, vol. 35(5), pages 2033-2042.
    8. Chenhao Fang & Tieju Ma, 2021. "Technology adoption with carbon emission trading mechanism: modeling with heterogeneous agents and uncertain carbon price," Annals of Operations Research, Springer, vol. 300(2), pages 577-600, May.
    9. Saed Alizamir & Francis de Véricourt & Peng Sun, 2016. "Efficient Feed-In-Tariff Policies for Renewable Energy Technologies," Operations Research, INFORMS, vol. 64(1), pages 52-66, February.
    10. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    11. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    12. van Blommestein, Kevin & Daim, Tugrul U. & Cho, Yonghee & Sklar, Paul, 2018. "Structuring financial incentives for residential solar electric systems," Renewable Energy, Elsevier, vol. 115(C), pages 28-40.
    13. Comin, Diego & Rode, Johannes, 2013. "From Green Users to Green Voters," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63678, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    14. Giovanni Dosi & Richard Nelson, 2013. "The Evolution of Technologies: An Assessment of the State-of-the-Art," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 3(1), pages 3-46, June.
    15. Spalding-Fecher, Randall & Joyce, Brian & Winkler, Harald, 2017. "Climate change and hydropower in the Southern African Power Pool and Zambezi River Basin: System-wide impacts and policy implications," Energy Policy, Elsevier, vol. 103(C), pages 84-97.
    16. Cantner, Uwe & Vannuccini, Simone, 2021. "Pervasive technologies and industrial linkages: Modeling acquired purposes," Structural Change and Economic Dynamics, Elsevier, vol. 56(C), pages 386-399.
    17. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
    18. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
    19. Mahmoud Tnani & Hafedh Ben Abdennebi, 2015. "A Model of Subsidies and Feed-In Tariffs for the Deployment of Photovoltaic Energy in the Residential Sector in Tunisia," International Journal of Management Sciences, Research Academy of Social Sciences, vol. 6(5), pages 235-259.
    20. Giovanni Pegoretti & Francesco Rentocchini & Giuseppe Vittucci Marzetti, 2012. "An agent-based model of innovation diffusion: network structure and coexistence under different information regimes," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 7(2), pages 145-165, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:239:y:2014:i:1:p:266-275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.