IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v46y2015i3p421-435.html
   My bibliography  Save this article

Strategic Adjustment of China’s Power Generation Capacity Structure Under the Constraint of Carbon Emission

Author

Listed:
  • Yuhong Wang
  • Xin Yao
  • Pengfei Yuan

Abstract

China’s power generation capacity structure should be adjusted due to the needs to reduce $$\hbox {CO}_{2}$$ CO 2 emissions. Now, we should take carbon dioxide emissions as a constraint in satisfying the electricity demand. Through an optimization model, the optimal power generation capacity structure under the constraint of carbon dioxide emission reduction is achieved. Also, the macroeconomic influences are accessed through a computable general equilibrium model, which results from the increment of power generation costs owing to adjustment of power generation capacity structure. The results show that, the implementation of renewable energy planning has significant positive effects on $$\hbox {CO}_{2}$$ CO 2 emission reduction. Nevertheless, the constraint of carbon dioxide emissions will change the power generation capacity structure as well as the power generation costs, and consequently has negative impacts on the macro-economy. It is worth noting that at current stage, many important industries in China are highly reliant on coal and thermal power. As a result, the potential for emission reduction by adjusting power generation capacity structure seems to decrease. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Yuhong Wang & Xin Yao & Pengfei Yuan, 2015. "Strategic Adjustment of China’s Power Generation Capacity Structure Under the Constraint of Carbon Emission," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 421-435, October.
  • Handle: RePEc:kap:compec:v:46:y:2015:i:3:p:421-435
    DOI: 10.1007/s10614-015-9487-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-015-9487-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-015-9487-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tol, Richard S.J., 2007. "Carbon dioxide emission scenarios for the USA," Energy Policy, Elsevier, vol. 35(11), pages 5310-5326, November.
    2. B. W. Mar & O. A. Bakken, 1981. "Applying Classical Control Theory to Energy-Economics Modeling---A Tool to Explain Model Behavior in Response to Varied Policy Decisions and Changing Inputs," Management Science, INFORMS, vol. 27(1), pages 81-92, January.
    3. Chandler, Jess, 2009. "Trendy solutions: Why do states adopt Sustainable Energy Portfolio Standards?," Energy Policy, Elsevier, vol. 37(8), pages 3274-3281, August.
    4. Wu, Yang & Yu, Zichao & Ngan, H.W. & Tan, Zhongfu, 2014. "Sustaining China׳s electricity market development," Energy Policy, Elsevier, vol. 73(C), pages 30-37.
    5. Lu, I.J. & Lewis, Charles & Lin, Sue J., 2009. "The forecast of motor vehicle, energy demand and CO2 emission from Taiwan's road transportation sector," Energy Policy, Elsevier, vol. 37(8), pages 2952-2961, August.
    6. Chakravorty, Ujjayant & Roumasset, James & Tse, Kinping, 1997. "Endogenous Substitution among Energy Resources and Global Warming," Journal of Political Economy, University of Chicago Press, vol. 105(6), pages 1201-1234, December.
    7. Steven A. Gabriel & Andy S. Kydes & Peter Whitman, 2001. "The National Energy Modeling System: A Large-Scale Energy-Economic Equilibrium Model," Operations Research, INFORMS, vol. 49(1), pages 14-25, February.
    8. Logan, Jeffrey & Lopez, Anthony & Mai, Trieu & Davidson, Carolyn & Bazilian, Morgan & Arent, Douglas, 2013. "Natural gas scenarios in the U.S. power sector," Energy Economics, Elsevier, vol. 40(C), pages 183-195.
    9. Elizabeth Symons & John Proops & Philip Gay, 1994. "Carbon taxes, consumer demand and carbon dioxide emissions: a simulation analysis for the UK," Fiscal Studies, Institute for Fiscal Studies, vol. 15(2), pages 19-43, May.
    10. Azar, Christian & Lindgren, Kristian & Andersson, Bjorn A., 2003. "Global energy scenarios meeting stringent CO2 constraints--cost-effective fuel choices in the transportation sector," Energy Policy, Elsevier, vol. 31(10), pages 961-976, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang Liu & Boqiang Lin, 2018. "Evaluating Design of Increasing Block Tariffs for Residential Natural Gas in China: A Case Study of Henan Province," Computational Economics, Springer;Society for Computational Economics, vol. 52(4), pages 1335-1351, December.
    2. Weiwei Chen & Maozeng Xu & Qingsong Xing & Ligang Cui & Liudan Jiao, 2020. "A Fuzzy Demand-Profit Model for the Sustainable Development of Electric Vehicles in China from the Perspective of Three-Level Service Chain," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    3. Yujing Liu & Dongxiao Niu, 2021. "Coupling and Coordination Analysis of Thermal Power Carbon Emission Efficiency under the Background of Clean Energy Substitution," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
    4. Wang, Shanyong & Wang, Jing & Lin, Shoufu & Li, Jun, 2019. "Public perceptions and acceptance of nuclear energy in China: The role of public knowledge, perceived benefit, perceived risk and public engagement," Energy Policy, Elsevier, vol. 126(C), pages 352-360.
    5. Zongwei Luo & Rameshwar Dubey & Thanos Papadopoulos & Benjamin Hazen & David Roubaud, 2018. "Explaining Environmental Sustainability in Supply Chains Using Graph Theory," Computational Economics, Springer;Society for Computational Economics, vol. 52(4), pages 1257-1275, December.
    6. Jianlin Wang & Jiajia Zhao & Hongzhou Li, 2018. "The Electricity Consumption and Economic Growth Nexus in China: A Bootstrap Seemingly Unrelated Regression Estimator Approach," Computational Economics, Springer;Society for Computational Economics, vol. 52(4), pages 1195-1211, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen Li & Yun Li & Yanbin Li, 2019. "Performance Evaluation of Energy Transition Based on the Technique for Order Preference by a Similar to Ideal Solution and Support Vector Machine Optimized by an Improved Artificial Bee Colony Algorit," Energies, MDPI, vol. 12(16), pages 1-21, August.
    2. Herwig Immervoll & Cathal O’Donoghue & Jules Linden & Denisa Sologon, 2023. "Who pays for higher carbon prices?: Illustration for Lithuania and a research agenda," OECD Social, Employment and Migration Working Papers 283, OECD Publishing.
    3. Missbach, Leonard & Steckel, Jan Christoph & Vogt-Schilb, Adrien, 2024. "Cash transfers in the context of carbon pricing reforms in Latin America and the Caribbean," World Development, Elsevier, vol. 173(C).
    4. Qodri Febrilian Erahman & Nadhilah Reyseliani & Widodo Wahyu Purwanto & Mahmud Sudibandriyo, 2019. "Modeling Future Energy Demand and CO 2 Emissions of Passenger Cars in Indonesia at the Provincial Level," Energies, MDPI, vol. 12(16), pages 1-25, August.
    5. Cathal O'Donoghue & Beenish Amjad & Jules Linden & Nora Lustig & Denisa Sologon & Yang Wang, 2025. "The Distributional Impact of Inflation in Pakistan: A Case Study of a New Price Focused Microsimulation Framework, PRICES," Working Papers 679, ECINEQ, Society for the Study of Economic Inequality.
    6. Xavier Labandeira & José M. Labeaga & Miguel Rodríguez, "undated". "Microsimulating the Effects of Household Energy Price Changes in Spain," Studies on the Spanish Economy 196, FEDEA.
    7. Brenner, Mark & Riddle, Matthew & Boyce, James K., 2007. "A Chinese sky trust?: Distributional impacts of carbon charges and revenue recycling in China," Energy Policy, Elsevier, vol. 35(3), pages 1771-1784, March.
    8. Chen, Yuche & Zhang, Yunteng & Fan, Yueyue & Hu, Kejia & Zhao, Jianyou, 2017. "A dynamic programming approach for modeling low-carbon fuel technology adoption considering learning-by-doing effect," Applied Energy, Elsevier, vol. 185(P1), pages 825-835.
    9. Muratori, Matteo & Ledna, Catherine & McJeon, Haewon & Kyle, Page & Patel, Pralit & Kim, Son H. & Wise, Marshall & Kheshgi, Haroon S. & Clarke, Leon E. & Edmonds, Jae, 2017. "Cost of power or power of cost: A U.S. modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 861-874.
    10. Claudia Kettner-Marx & Daniela Kletzan-Slamanig, 2018. "Carbon Taxes from an Economic Perspective," WIFO Working Papers 554, WIFO.
    11. Roumasset James & Wada Christopher A, 2011. "Ordering Renewable Resources: Groundwater, Recycling, and Desalination," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 11(1), pages 1-29, May.
    12. Pan, Yuling & Dong, Feng, 2023. "Green finance policy coupling effect of fossil energy use rights trading and renewable energy certificates trading on low carbon economy: Taking China as an example," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 658-679.
    13. Philipp M. Richter, 2015. "From Boom to Bust? A Critical Look at US Shale Gas Projections," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    14. Missbach, Leonard & Steckel, Jan Christoph & Vogt-Schilb, Adrien, 2023. "Cash transfers in the context of carbon pricing reforms in Latin America and the Caribbean," IDB Publications (Working Papers) 12536, Inter-American Development Bank.
    15. Zugang Liu & Anna Nagurney, 2009. "An integrated electric power supply chain and fuel market network framework: Theoretical modeling with empirical analysis for New England," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(7), pages 600-624, October.
    16. Kydes, Andy S., 2007. "Impacts of a renewable portfolio generation standard on US energy markets," Energy Policy, Elsevier, vol. 35(2), pages 809-814, February.
    17. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    18. McNamara, David & Caulfield, Brian, 2013. "Examining the impact of carbon price changes under a personalised carbon trading scheme for transport," Transport Policy, Elsevier, vol. 30(C), pages 238-253.
    19. Terry Barker & Nick Johnstone, 1993. "Equity and Efficiencyin Policies to Reduce Carbon Emissions in The Domestic Sector," Energy & Environment, , vol. 4(4), pages 335-361, December.
    20. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:46:y:2015:i:3:p:421-435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.