IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v38y2012i1p212-227.html
   My bibliography  Save this article

Hydrogen production from biomass gasification in the oil refining industry – A system analysis

Author

Listed:
  • Johansson, Daniella
  • Franck, Per-Åke
  • Berntsson, Thore

Abstract

In this paper, the global CO2 effect of integrating different biomass gasification concepts to meet an increasing demand of hydrogen in an oil refinery is examined and presented in comparison with a conventional steam reformer. The studied refinery is a hydro skimming refinery with a future hydrogen deficit of 16,000 Nm3/h. Three gasification concepts are considered: Entrained Flow (EF), Circulated Fluidised Bed (CFB) and Double Bed (DB). The system analysis is made with respect to global CO2 emissions and primary energy use. The results show that if biomass is considered as an unlimited resource (i.e. sufficient biomass is considered to be available to substitute for all fossil fuels in society), biomass gasification concepts have a potential to reduce CO2 emissions. The EF case shows the largest reduction potential. However, if biomass is considered as a limited resource (i.e. increased use of biomass at the refinery will lead to increased use of fossil fuel elsewhere in society), all concepts show an increase of CO2 emissions. Here, the CFB gasifier shows lowest increase of CO2 emission. The CO2 effect of the different alternatives shows sensitivity to assumptions regarding alternative biomass user.

Suggested Citation

  • Johansson, Daniella & Franck, Per-Åke & Berntsson, Thore, 2012. "Hydrogen production from biomass gasification in the oil refining industry – A system analysis," Energy, Elsevier, vol. 38(1), pages 212-227.
  • Handle: RePEc:eee:energy:v:38:y:2012:i:1:p:212-227
    DOI: 10.1016/j.energy.2011.12.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421100805X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.12.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pettersson, Karin & Harvey, Simon, 2010. "CO2 emission balances for different black liquor gasification biorefinery concepts for production of electricity or second-generation liquid biofuels," Energy, Elsevier, vol. 35(2), pages 1101-1106.
    2. Andersson, E. & Harvey, S., 2006. "System analysis of hydrogen production from gasified black liquor," Energy, Elsevier, vol. 31(15), pages 3426-3434.
    3. Azar, Christian & Lindgren, Kristian & Andersson, Bjorn A., 2003. "Global energy scenarios meeting stringent CO2 constraints--cost-effective fuel choices in the transportation sector," Energy Policy, Elsevier, vol. 31(10), pages 961-976, August.
    4. Andersson, E. & Harvey, S., 2007. "Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass," Energy, Elsevier, vol. 32(4), pages 399-405.
    5. Hamelinck, Carlo N. & Faaij, André P.C. & den Uil, Herman & Boerrigter, Harold, 2004. "Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential," Energy, Elsevier, vol. 29(11), pages 1743-1771.
    6. Fahlén, E. & Ahlgren, E.O., 2009. "Assessment of integration of different biomass gasification alternatives in a district-heating system," Energy, Elsevier, vol. 34(12), pages 2184-2195.
    7. Wetterlund, Elisabeth & Pettersson, Karin & Harvey, Simon, 2011. "Systems analysis of integrating biomass gasification with pulp and paper production – Effects on economic performance, CO2 emissions and energy use," Energy, Elsevier, vol. 36(2), pages 932-941.
    8. Szklo, Alexandre & Schaeffer, Roberto, 2007. "Fuel specification, energy consumption and CO2 emission in oil refineries," Energy, Elsevier, vol. 32(7), pages 1075-1092.
    9. Axelsson, E. & Harvey, S. & Berntsson, T., 2009. "A tool for creating energy market scenarios for evaluation of investments in energy intensive industry," Energy, Elsevier, vol. 34(12), pages 2069-2074.
    10. Jia, Nan & Zhang, Nan, 2011. "Multi-component optimisation for refinery hydrogen networks," Energy, Elsevier, vol. 36(8), pages 4663-4670.
    11. Andersson, Eva & Harvey, Simon & Berntsson, Thore, 2006. "Energy efficient upgrading of biofuel integrated with a pulp mill," Energy, Elsevier, vol. 31(10), pages 1384-1394.
    12. Sarkar, Susanjib & Kumar, Amit, 2010. "Biohydrogen production from forest and agricultural residues for upgrading of bitumen from oil sands," Energy, Elsevier, vol. 35(2), pages 582-591.
    13. Kumar, A. & Gautami, G. & Khanam, S., 2010. "Hydrogen distribution in the refinery using mathematical modeling," Energy, Elsevier, vol. 35(9), pages 3763-3772.
    14. Domenichini, R. & Gallio, M. & Lazzaretto, A., 2010. "Combined production of hydrogen and power from heavy oil gasification: Pinch analysis, thermodynamic and economic evaluations," Energy, Elsevier, vol. 35(5), pages 2184-2193.
    15. Uslu, Ayla & Faaij, André P.C. & Bergman, P.C.A., 2008. "Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation," Energy, Elsevier, vol. 33(8), pages 1206-1223.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Holmgren, Kristina M. & Andersson, Eva & Berntsson, Thore & Rydberg, Tomas, 2014. "Gasification-based methanol production from biomass in industrial clusters: Characterisation of energy balances and greenhouse gas emissions," Energy, Elsevier, vol. 69(C), pages 622-637.
    2. Caumon, Pauline & Lopez-Botet Zulueta, Miguel & Louyrette, Jérémy & Albou, Sandrine & Bourasseau, Cyril & Mansilla, Christine, 2015. "Flexible hydrogen production implementation in the French power system: Expected impacts at the French and European levels," Energy, Elsevier, vol. 81(C), pages 556-562.
    3. Johansson, Maria T., 2013. "Bio-synthetic natural gas as fuel in steel industry reheating furnaces – A case study of economic performance and effects on global CO2 emissions," Energy, Elsevier, vol. 57(C), pages 699-708.
    4. Olateju, Babatunde & Monds, Joshua & Kumar, Amit, 2014. "Large scale hydrogen production from wind energy for the upgrading of bitumen from oil sands," Applied Energy, Elsevier, vol. 118(C), pages 48-56.
    5. Rahil, Abdulla & Gammon, Rupert & Brown, Neil, 2018. "Flexible operation of electrolyser at the garage forecourt to support grid balancing and exploitation of hydrogen as a clean fuel," Research in Transportation Economics, Elsevier, vol. 70(C), pages 125-138.
    6. Abánades, A. & Rubbia, C. & Salmieri, D., 2012. "Technological challenges for industrial development of hydrogen production based on methane cracking," Energy, Elsevier, vol. 46(1), pages 359-363.
    7. Yang, Weijuan & Zhang, Tianyou & Liu, Jianzhong & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2015. "Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature," Energy, Elsevier, vol. 93(P1), pages 451-457.
    8. Abdulla Rahil & Rupert Gammon, 2017. "Dispatchable Hydrogen Production at the Forecourt for Electricity Demand Shaping," Sustainability, MDPI, vol. 9(10), pages 1-22, October.
    9. Olateju, Babatunde & Kumar, Amit, 2016. "A techno-economic assessment of hydrogen production from hydropower in Western Canada for the upgrading of bitumen from oil sands," Energy, Elsevier, vol. 115(P1), pages 604-614.
    10. Chutichai, Bhawasut & Patcharavorachot, Yaneeporn & Assabumrungrat, Suttichai & Arpornwichanop, Amornchai, 2015. "Parametric analysis of a circulating fluidized bed biomass gasifier for hydrogen production," Energy, Elsevier, vol. 82(C), pages 406-413.
    11. Ozalp, Nesrin & Ibrik, Karim & Al-Meer, Mariam, 2013. "Kinetics and heat transfer analysis of carbon catalyzed solar cracking process," Energy, Elsevier, vol. 55(C), pages 74-81.
    12. Liszka, Marcin & Malik, Tomasz & Manfrida, Giampaolo, 2012. "Energy and exergy analysis of hydrogen-oriented coal gasification with CO2 capture," Energy, Elsevier, vol. 45(1), pages 142-150.
    13. Mansilla, C. & Louyrette, J. & Albou, S. & Bourasseau, C. & Dautremont, S., 2013. "Economic competitiveness of off-peak hydrogen production today – A European comparison," Energy, Elsevier, vol. 55(C), pages 996-1001.
    14. Lin, Kuang C. & Lin, Yuan-Chung & Hsiao, Yi-Hsing, 2014. "Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production," Energy, Elsevier, vol. 64(C), pages 567-574.
    15. Nimana, Balwinder & Canter, Christina & Kumar, Amit, 2015. "Life cycle assessment of greenhouse gas emissions from Canada's oil sands-derived transportation fuels," Energy, Elsevier, vol. 88(C), pages 544-554.
    16. Lee, Minji & Cho, Seolhee & Kim, Jiyong, 2017. "A comprehensive model for design and analysis of bioethanol production and supply strategies from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 112(C), pages 247-259.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wetterlund, Elisabeth & Pettersson, Karin & Harvey, Simon, 2011. "Systems analysis of integrating biomass gasification with pulp and paper production – Effects on economic performance, CO2 emissions and energy use," Energy, Elsevier, vol. 36(2), pages 932-941.
    2. Joelsson, Jonas M. & Gustavsson, Leif, 2012. "Reductions in greenhouse gas emissions and oil use by DME (di-methyl ether) and FT (Fischer-Tropsch) diesel production in chemical pulp mills," Energy, Elsevier, vol. 39(1), pages 363-374.
    3. Holmgren, Kristina M. & Berntsson, Thore & Andersson, Eva & Rydberg, Tomas, 2012. "System aspects of biomass gasification with methanol synthesis – Process concepts and energy analysis," Energy, Elsevier, vol. 45(1), pages 817-828.
    4. Joelsson, Jonas & Gustavsson, Leif, 2012. "Swedish biomass strategies to reduce CO2 emission and oil use in an EU context," Energy, Elsevier, vol. 43(1), pages 448-468.
    5. Pettersson, Karin & Harvey, Simon, 2012. "Comparison of black liquor gasification with other pulping biorefinery concepts – Systems analysis of economic performance and CO2 emissions," Energy, Elsevier, vol. 37(1), pages 136-153.
    6. Isaksson, Johan & Pettersson, Karin & Mahmoudkhani, Maryam & Åsblad, Anders & Berntsson, Thore, 2012. "Integration of biomass gasification with a Scandinavian mechanical pulp and paper mill – Consequences for mass and energy balances and global CO2 emissions," Energy, Elsevier, vol. 44(1), pages 420-428.
    7. Wetterlund, Elisabeth & Söderström, Mats, 2010. "Biomass gasification in district heating systems - The effect of economic energy policies," Applied Energy, Elsevier, vol. 87(9), pages 2914-2922, September.
    8. Johansson, Maria T., 2013. "Bio-synthetic natural gas as fuel in steel industry reheating furnaces – A case study of economic performance and effects on global CO2 emissions," Energy, Elsevier, vol. 57(C), pages 699-708.
    9. Akbari, Maryam & Oyedun, Adetoyese Olajire & Kumar, Amit, 2018. "Ammonia production from black liquor gasification and co-gasification with pulp and waste sludges: A techno-economic assessment," Energy, Elsevier, vol. 151(C), pages 133-143.
    10. Holmgren, Kristina M. & Andersson, Eva & Berntsson, Thore & Rydberg, Tomas, 2014. "Gasification-based methanol production from biomass in industrial clusters: Characterisation of energy balances and greenhouse gas emissions," Energy, Elsevier, vol. 69(C), pages 622-637.
    11. Wafiq, A. & Hanafy, M., 2015. "Feasibility assessment of diesel fuel production in Egypt using coal and biomass: Integrated novel methodology," Energy, Elsevier, vol. 85(C), pages 522-533.
    12. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    13. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    14. Meerman, J.C. & Ramírez, A. & Turkenburg, W.C. & Faaij, A.P.C., 2011. "Performance of simulated flexible integrated gasification polygeneration facilities. Part A: A technical-energetic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2563-2587, August.
    15. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2015. "The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems," Energy, Elsevier, vol. 90(P1), pages 148-162.
    16. Clausen, Lasse R. & Elmegaard, Brian & Houbak, Niels, 2010. "Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass," Energy, Elsevier, vol. 35(12), pages 4831-4842.
    17. Wu, Sidong & Yu, Zemiao & Feng, Xiao & Liu, Guilian & Deng, Chun & Chu, Khim Hoong, 2013. "Optimization of refinery hydrogen distribution systems considering the number of compressors," Energy, Elsevier, vol. 62(C), pages 185-195.
    18. Guo, Da-liang & Wu, Shu-bin & Liu, Bei & Yin, Xiu-li & Yang, Qing, 2012. "Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification," Applied Energy, Elsevier, vol. 95(C), pages 22-30.
    19. Umana, Blessing & Shoaib, Abeer & Zhang, Nan & Smith, Robin, 2014. "Integrating hydroprocessors in refinery hydrogen network optimisation," Applied Energy, Elsevier, vol. 133(C), pages 169-182.
    20. Sarkar, Susanjib & Kumar, Amit & Sultana, Arifa, 2011. "Biofuels and biochemicals production from forest biomass in Western Canada," Energy, Elsevier, vol. 36(10), pages 6251-6262.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:38:y:2012:i:1:p:212-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.