IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v33y2008i2p352-361.html
   My bibliography  Save this article

System study of carbon dioxide (CO2) capture in bio-based motor fuel production

Author

Listed:
  • Lindfeldt, Erik G.
  • Westermark, Mats O.

Abstract

A number of different technologies for producing renewable motor fuels have been studied; some effects of applying carbon dioxide (CO2) capture to the production of renewable motor fuels are described in this paper. Some of the technologies studied are well suited for CO2 capture. However, it is shown that the advantages with CO2 capture for these technologies are not enough to offset their shortcomings described in previous studies, which show that the largest CO2 reduction from biomass in Sweden may be achieved by producing fuel pellets for coal substitution or using the biomass in combined heat and power plants. A conclusion of the present paper is that even with CO2 capture added to the respective technology, it is inefficient to use renewable resources for motor fuel production if the aim is to achieve as high CO2 emission reduction as possible per input of biomass. Therefore, the large Swedish subsidies of the production of motor fuels appear sub-optimal, also when the possibility of CO2 capture is considered. Nevertheless, incorporating CO2 capture in the production of renewable motor fuels from biomass might be a cost-effective way of reducing CO2 emissions.

Suggested Citation

  • Lindfeldt, Erik G. & Westermark, Mats O., 2008. "System study of carbon dioxide (CO2) capture in bio-based motor fuel production," Energy, Elsevier, vol. 33(2), pages 352-361.
  • Handle: RePEc:eee:energy:v:33:y:2008:i:2:p:352-361
    DOI: 10.1016/j.energy.2007.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544207001594
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2007.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Azar, Christian & Lindgren, Kristian & Andersson, Bjorn A., 2003. "Global energy scenarios meeting stringent CO2 constraints--cost-effective fuel choices in the transportation sector," Energy Policy, Elsevier, vol. 31(10), pages 961-976, August.
    2. Shapouri, Hosein & Duffield, James A. & Wang, Michael Q., 2002. "The Energy Balance of Corn Ethanol: An Update," Agricultural Economic Reports 34075, United States Department of Agriculture, Economic Research Service.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricci, Olivia, 2012. "Providing adequate economic incentives for bioenergies with CO2 capture and geological storage," Energy Policy, Elsevier, vol. 44(C), pages 362-373.
    2. Audrey Laude & Christian Jonen, 2011. "Biomass and CCS: The influence of the learning effect," Working Papers halshs-00829779, HAL.
    3. Christian JONEN & Audrey LAUDE, 2011. "Biomasse and CCS: The Influence of the Learning Effect," LEO Working Papers / DR LEO 273, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    4. Laude, Audrey & Jonen, Christian, 2013. "Biomass and CCS: The influence of technical change," Energy Policy, Elsevier, vol. 60(C), pages 916-924.
    5. Powell, E.E. & Hill, G.A., 2010. "Carbon dioxide neutral, integrated biofuel facility," Energy, Elsevier, vol. 35(12), pages 4582-4586.
    6. Haro, Pedro & Aracil, Cristina & Vidal-Barrero, Fernando & Ollero, Pedro, 2015. "Balance and saving of GHG emissions in thermochemical biorefineries," Applied Energy, Elsevier, vol. 147(C), pages 444-455.
    7. Haro, Pedro & Aracil, Cristina & Vidal-Barrero, Fernando & Ollero, Pedro, 2015. "Rewarding of extra-avoided GHG emissions in thermochemical biorefineries incorporating Bio-CCS," Applied Energy, Elsevier, vol. 157(C), pages 255-266.
    8. Selosse, Sandrine & Ricci, Olivia, 2014. "Achieving negative emissions with BECCS (bioenergy with carbon capture and storage) in the power sector: New insights from the TIAM-FR (TIMES Integrated Assessment Model France) model," Energy, Elsevier, vol. 76(C), pages 967-975.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cherubini, Francesco & Bird, Neil D. & Cowie, Annette & Jungmeier, Gerfried & Schlamadinger, Bernhard & Woess-Gallasch, Susanne, 2009. "Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations," Resources, Conservation & Recycling, Elsevier, vol. 53(8), pages 434-447.
    2. Jonathan & M.O. Scurlock, 2005. "Biofuels for Transport in the Uk: What is Feasible?: Review/Commentary Article," Energy & Environment, , vol. 16(2), pages 273-282, March.
    3. Beghin, John C. & Jensen, Helen H., 2008. "Farm policies and added sugars in US diets," Food Policy, Elsevier, vol. 33(6), pages 480-488, December.
    4. Ryan, Lisa & Convery, Frank & Ferreira, Susana, 2006. "Stimulating the use of biofuels in the European Union: Implications for climate change policy," Energy Policy, Elsevier, vol. 34(17), pages 3184-3194, November.
    5. Sudhakar Yedla, 2007. "Choosing between Global and Local Emission Control Strategies in Urban Transport Sector, Which way to go?," Development Economics Working Papers 22352, East Asian Bureau of Economic Research.
    6. Abbe Hamilton & Stephen B. Balogh & Adrienna Maxwell & Charles A. S. Hall, 2013. "Efficiency of Edible Agriculture in Canada and the U.S. Over the Past Three and Four Decades," Energies, MDPI, vol. 6(3), pages 1-30, March.
    7. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    8. Hellsmark, Hans & Jacobsson, Staffan, 2012. "Realising the potential of gasified biomass in the European Union—Policy challenges in moving from demonstration plants to a larger scale diffusion," Energy Policy, Elsevier, vol. 41(C), pages 507-518.
    9. Chen, Huayi & Ma, Tieju, 2017. "Optimizing systematic technology adoption with heterogeneous agents," European Journal of Operational Research, Elsevier, vol. 257(1), pages 287-296.
    10. Persson, Tobias A. & Azar, Christian & Lindgren, Kristian, 2006. "Allocation of CO2 emission permits--Economic incentives for emission reductions in developing countries," Energy Policy, Elsevier, vol. 34(14), pages 1889-1899, September.
    11. Persson, Tobias A. & Azar, C. & Johansson, D. & Lindgren, K., 2007. "Major oil exporters may profit rather than lose, in a carbon-constrained world," Energy Policy, Elsevier, vol. 35(12), pages 6346-6353, December.
    12. Milazzo, M.F. & Spina, F. & Primerano, P. & Bart, J.C.J., 2013. "Soy biodiesel pathways: Global prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 579-624.
    13. Park, Young-Kwon & Yoo, Myung Lang & Lee, Hyung Won & Park, Sung Hoon & Jung, Sang-Chul & Park, Sang-Sook & Kim, Sang-Chai, 2012. "Effects of operation conditions on pyrolysis characteristics of agricultural residues," Renewable Energy, Elsevier, vol. 42(C), pages 125-130.
    14. Chen, Huayi & Ma, Tieju, 2021. "Technology adoption and carbon emissions with dynamic trading among heterogeneous agents," Energy Economics, Elsevier, vol. 99(C).
    15. Weiwei Xiong & Katsumasa Tanaka & Philippe Ciais & Daniel J. A. Johansson & Mariliis Lehtveer, 2022. "emIAM v1.0: an emulator for Integrated Assessment Models using marginal abatement cost curves," Papers 2212.12060, arXiv.org.
    16. Sergio Madrid, 2005. "Discussion," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 7(3), pages 401-415, September.
    17. Yang, Q. & Chen, G.Q., 2013. "Greenhouse gas emissions of corn–ethanol production in China," Ecological Modelling, Elsevier, vol. 252(C), pages 176-184.
    18. Liu, Huacai & Huang, Yanqin & Yuan, Hongyou & Yin, Xiuli & Wu, Chuangzhi, 2018. "Life cycle assessment of biofuels in China: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 301-322.
    19. Gül, Timur & Kypreos, Socrates & Turton, Hal & Barreto, Leonardo, 2009. "An energy-economic scenario analysis of alternative fuels for personal transport using the Global Multi-regional MARKAL model (GMM)," Energy, Elsevier, vol. 34(10), pages 1423-1437.
    20. R. Lal, 2007. "Carbon Management in Agricultural Soils," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(2), pages 303-322, February.

    More about this item

    Keywords

    Biomass; CO2 reduction; Fermentation; Anaerobic digestion;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:33:y:2008:i:2:p:352-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.